Home
Class 12
MATHS
If | z (1)| = | z (2 )| and arg ((z (1)...

If `| z _(1)| = | z _(2 )| and arg ((z _(1))/( z_(2)) ) = pi,` then `z _(1) + z _(2)` is equal to

A

0

B

purely imagninary

C

purely real

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given conditions: 1. **Given**: \( |z_1| = |z_2| \) and \( \arg\left(\frac{z_1}{z_2}\right) = \pi \). 2. **Understanding the Modulus Condition**: Since \( |z_1| = |z_2| \), we can denote both moduli as \( r \). Therefore, we can write: \[ z_1 = r(\cos \theta_1 + i \sin \theta_1) \quad \text{and} \quad z_2 = r(\cos \theta_2 + i \sin \theta_2) \] where \( \theta_1 = \arg(z_1) \) and \( \theta_2 = \arg(z_2) \). 3. **Understanding the Argument Condition**: The condition \( \arg\left(\frac{z_1}{z_2}\right) = \pi \) implies: \[ \arg(z_1) - \arg(z_2) = \pi \] This means: \[ \theta_1 - \theta_2 = \pi \quad \Rightarrow \quad \theta_2 = \theta_1 - \pi \] 4. **Substituting for \( z_2 \)**: Now substituting \( \theta_2 \) into the expression for \( z_2 \): \[ z_2 = r(\cos(\theta_1 - \pi) + i \sin(\theta_1 - \pi) \] Using the properties of trigonometric functions, we know: \[ \cos(\theta_1 - \pi) = -\cos(\theta_1) \quad \text{and} \quad \sin(\theta_1 - \pi) = -\sin(\theta_1) \] Therefore: \[ z_2 = r(-\cos(\theta_1) - i \sin(\theta_1) ) = -r(\cos(\theta_1) + i \sin(\theta_1)) = -z_1 \] 5. **Finding \( z_1 + z_2 \)**: Now we can find \( z_1 + z_2 \): \[ z_1 + z_2 = z_1 + (-z_1) = 0 \] Thus, the final result is: \[ z_1 + z_2 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

|z_(1)|=|z_(2)| and arg((z_(1))/(z_(2)))=pi, then z_(1)+z_(2) is equal to

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

If z_(1),z_(2) are complex number such that Re(z_(1) ) = |z_(1) - 1| , Re(z_(2)) = |z_(2) -1| and arg(z_(1) - z_(2)) = (pi)/(3) , then Im (z_(1) + z_(2)) is equal to

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

Let | z_ (1) | = | z_ (2) | and arg (z_ (1)) + arg (z_ (2)) = (pi) / (2) then

If |z_1| = |z_2| and "arg" (z_1) + "arg" (z_2) = pi//2, , then

z_(1) "the"z_(2) "are two complex numbers such that" |z_(1)| = |z_(2)| . "and" arg (z_(1)) + arg (z_(2) = pi," then show that "z_(1) = - barz_(2).

If for complex numbers z_(1) and z_(2),arg(z_(1))-arg(z_(2))=0 then |z_(1)-z_(2)| is equal to