Home
Class 12
MATHS
If |{:( 6i, - 3i, 1),( 4, 3i, -1), (20, ...

If `|{:( 6i, - 3i, 1),( 4, 3i, -1), (20, 3, i):}| \= x + iy` then

A

`x = 3, y =1`

B

`x =1, y =3`

C

`x =0, y =3`

D

`x =0, y =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given in the question, we will follow these steps: ### Step 1: Write the Determinant We have the determinant of the following matrix: \[ \begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} \] ### Step 2: Calculate the Determinant To calculate the determinant, we will use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where the matrix is: \[ A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: - \( a = 6i \), \( b = -3i \), \( c = 1 \) - \( d = 4 \), \( e = 3i \), \( f = -1 \) - \( g = 20 \), \( h = 3 \), \( i = i \) Now we can substitute these values into the determinant formula: \[ \text{det}(A) = 6i \left( (3i)(i) - (-1)(3) \right) - (-3i) \left( (4)(i) - (-1)(20) \right) + 1 \left( (4)(3) - (3i)(20) \right) \] ### Step 3: Simplify Each Term 1. Calculate \( (3i)(i) - (-1)(3) \): \[ (3i^2 + 3) = (3(-1) + 3) = -3 + 3 = 0 \] 2. Calculate \( (4)(i) - (-1)(20) \): \[ 4i + 20 \] 3. Calculate \( (4)(3) - (3i)(20) \): \[ 12 - 60i \] ### Step 4: Substitute Back into the Determinant Now substituting back into the determinant formula: \[ \text{det}(A) = 6i(0) - (-3i)(4i + 20) + 1(12 - 60i) \] This simplifies to: \[ 0 + 3i(4i + 20) + 12 - 60i \] ### Step 5: Expand and Combine Like Terms 1. Expand \( 3i(4i + 20) \): \[ 3i(4i) + 3i(20) = 12i^2 + 60i = 12(-1) + 60i = -12 + 60i \] 2. Now combine all terms: \[ -12 + 60i + 12 - 60i = 0 \] ### Final Result The determinant evaluates to \( 0 + 0i \). Therefore, we have: \[ x + iy = 0 + 0i \] Thus, \( x = 0 \) and \( y = 0 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

If |{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|=x+iy,i=sqrt(-1) then

If x + iy=|{:(6i,-3i,1),(4,3i,-1),(20,3,i):}| , then what is x - iy equal to ?

x+iy=det[[6i,-3i,14,3i,-120,3,i]], find x and y

If |(x,-3i,1),(y,1,i),(0,2i,-i)|=6+11i . then what are the value of x and y respectively ?

If x+iy=det[[6i,-3i,14,3i,-120,3,1]] then what is

Delta = |{:(a,4-i,1-i),(4+i,b,3+i),(1-i,3-i,c):}| is always