Home
Class 12
MATHS
If (x + iy) ^( 1//3) = 2 + 3i, then 3x ...

If `(x + iy) ^( 1//3) = 2 + 3i,` then `3x + 2y ` is equal to

A

`- 20`

B

`- 60`

C

`- 120`

D

`60`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ (x + iy)^{\frac{1}{3}} = 2 + 3i \] ### Step 1: Cube both sides To eliminate the cube root, we will cube both sides of the equation: \[ x + iy = (2 + 3i)^3 \] ### Step 2: Calculate \((2 + 3i)^3\) We will now calculate \((2 + 3i)^3\) using the binomial theorem or by direct multiplication: \[ (2 + 3i)^3 = (2 + 3i)(2 + 3i)(2 + 3i) \] First, calculate \((2 + 3i)(2 + 3i)\): \[ (2 + 3i)(2 + 3i) = 4 + 12i + 9i^2 = 4 + 12i - 9 = -5 + 12i \] Now, multiply \((-5 + 12i)(2 + 3i)\): \[ (-5 + 12i)(2 + 3i) = -10 - 15i + 24i + 36i^2 = -10 + 9i - 36 = -46 + 9i \] So, we have: \[ x + iy = -46 + 9i \] ### Step 3: Equate real and imaginary parts From the equation \(x + iy = -46 + 9i\), we can equate the real and imaginary parts: \[ x = -46 \quad \text{and} \quad y = 9 \] ### Step 4: Calculate \(3x + 2y\) Now we need to find \(3x + 2y\): \[ 3x + 2y = 3(-46) + 2(9) \] Calculating this gives: \[ 3(-46) = -138 \quad \text{and} \quad 2(9) = 18 \] Now combine these results: \[ 3x + 2y = -138 + 18 = -120 \] ### Final Answer Thus, the value of \(3x + 2y\) is: \[ \boxed{-120} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

If z = x + iy, z^(1//3) = a - ib , then x/a - y/b = ka^2 - b^2 , where k is equal to :

If (-7-24i)^(1/2)=x-iy , then x^(2)+y^(2) is equal to

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :

if (a+ib^((1)/(3))=x+iy then (a)/(x)+(b)/(y) is equal to