Home
Class 12
MATHS
If a = cos theta + i sin theta, then ( ...

If `a = cos theta + i sin theta, ` then `( 1 + a)/( 1 -a )` is equal to

A

`cot (( theta)/(2))`

B

`cot theta `

C

`i cot "" ( theta)/(2)`

D

`i tan "" ( theta)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \((1 + a)/(1 - a)\) where \(a = \cos \theta + i \sin \theta\). ### Step-by-step Solution: 1. **Substitute \(a\)**: \[ a = \cos \theta + i \sin \theta \] Therefore, we can write: \[ 1 + a = 1 + \cos \theta + i \sin \theta \] \[ 1 - a = 1 - (\cos \theta + i \sin \theta) = 1 - \cos \theta - i \sin \theta \] 2. **Rewrite the expression**: \[ \frac{1 + a}{1 - a} = \frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta - i \sin \theta} \] 3. **Multiply the numerator and denominator by the conjugate of the denominator**: The conjugate of \(1 - \cos \theta - i \sin \theta\) is \(1 - \cos \theta + i \sin \theta\). \[ = \frac{(1 + \cos \theta + i \sin \theta)(1 - \cos \theta + i \sin \theta)}{(1 - \cos \theta - i \sin \theta)(1 - \cos \theta + i \sin \theta)} \] 4. **Simplify the denominator**: Using the difference of squares: \[ (1 - \cos \theta)^2 + \sin^2 \theta = 1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta = 1 - 2\cos \theta + 1 = 2(1 - \cos \theta) \] 5. **Expand the numerator**: \[ (1 + \cos \theta + i \sin \theta)(1 - \cos \theta + i \sin \theta) = (1 + \cos \theta)(1 - \cos \theta) + i \sin \theta(1 + \cos \theta) + i \sin \theta(1 - \cos \theta) - \sin^2 \theta \] \[ = 1 - \cos^2 \theta + i \sin \theta(1 + \cos \theta - 1 + \cos \theta) - \sin^2 \theta \] \[ = \sin^2 \theta + 2i \sin \theta \cos \theta \] 6. **Combine results**: The numerator simplifies to: \[ \sin^2 \theta + 2i \sin \theta \cos \theta \] Thus, we have: \[ \frac{\sin^2 \theta + 2i \sin \theta \cos \theta}{2(1 - \cos \theta)} \] 7. **Final simplification**: We can express \(\sin^2 \theta\) as \(1 - \cos^2 \theta\): \[ = \frac{(1 - \cos^2 \theta) + 2i \sin \theta \cos \theta}{2(1 - \cos \theta)} \] 8. **Recognizing trigonometric identities**: Using \(1 - \cos^2 \theta = \sin^2 \theta\) and simplifying further leads to: \[ = \frac{i \sin 2\theta}{2(1 - \cos \theta)} \] ### Conclusion: The final result is: \[ \frac{i \sin 2\theta}{2(1 - \cos \theta)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

1 + cos theta + i sin theta | =?

(1)/(cos theta-i sin theta)

If alpha=cos theta+i sin theta, then (1+alpha)/(1-alpha) equals ( (i)cot theta(ii)i tan((theta)/(2))(iii)i cot((theta)/(2))(iv)cot((theta)/(2))

What is the ( cos theta )/( 1+ sin theta ) + ( 1)/( cot theta ) equal to ?

What is ( sin theta - cos theta + 1 )/( sin theta + cos theta -1) - ( sin theta + 1 )/( cos theta ) equal to ?

(cos theta)/(1 + sin theta) equals

(sin theta)/(1+cos theta) is equal to

If ((1 + cos theta + i sin theta ) /(i+ sin theta + i cos theta ))= cos ntheta + i sin n theta then n is equal to :

Solve (1)/(cos theta-i sin theta)