Home
Class 12
MATHS
If omega is a complex cube root of unit...

If `omega ` is a complex cube root of unity, then `sin { ( omega ^(10) + omega ^(23) ) pi - ( pi)/(4) }` is equal to

A

`(1)/(sqrt2)`

B

`(1)/(2)`

C

`1`

D

`(sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \sin \left( \omega^{10} + \omega^{23} \right) \pi - \frac{\pi}{4} \), where \( \omega \) is a complex cube root of unity. ### Step-by-Step Solution: 1. **Understanding the cube roots of unity**: The complex cube roots of unity are given by: \[ \omega = e^{2\pi i / 3}, \quad \omega^2 = e^{4\pi i / 3}, \quad \text{and} \quad \omega^3 = 1 \] Thus, \( \omega^3 = 1 \) implies that \( \omega^n \) can be simplified based on \( n \mod 3 \). 2. **Simplifying \( \omega^{10} \)**: To simplify \( \omega^{10} \): \[ 10 \mod 3 = 1 \quad \Rightarrow \quad \omega^{10} = \omega^1 = \omega \] 3. **Simplifying \( \omega^{23} \)**: To simplify \( \omega^{23} \): \[ 23 \mod 3 = 2 \quad \Rightarrow \quad \omega^{23} = \omega^2 \] 4. **Adding the results**: Now we can add the two results: \[ \omega^{10} + \omega^{23} = \omega + \omega^2 \] 5. **Using the property of cube roots of unity**: We know from the properties of cube roots of unity that: \[ 1 + \omega + \omega^2 = 0 \quad \Rightarrow \quad \omega + \omega^2 = -1 \] 6. **Substituting back into the sine function**: Now substituting back into the sine function: \[ \sin \left( \omega^{10} + \omega^{23} \right) \pi - \frac{\pi}{4} = \sin(-\pi) - \frac{\pi}{4} \] 7. **Evaluating the sine function**: We know that: \[ \sin(-\pi) = 0 \] Therefore: \[ 0 - \frac{\pi}{4} = -\frac{\pi}{4} \] ### Final Result: Thus, the final answer is: \[ \sin \left( \omega^{10} + \omega^{23} \right) \pi - \frac{\pi}{4} = -\frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then arg (iomega) + "arg" (iomega^(2))=

If omega is a complex cube root of unity, then what is omega^(10)+omega^(-10) equal to ?

If omega is a complex cube root of unity,then (x-y)(x omega-y)(x omega^(2)-y)=

If omega ne 1 is a cube root of unity, then (1)/(pi) sin^(-1) [(omega^(73) + omega^(83))+"tan"(5pi)/(4)] is equal to ___________

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a cube root of unity then find the value of sin((omega^(10)+omega^(23))-(pi)/(4))

If omega is a cube root of unity, then tan{(omega^(200)+(1)/(omega^(200)))pi+(pi)/(4)}=