Home
Class 12
MATHS
The amplitude of (1+ i sqrt3)/( sqrt3 + ...

The amplitude of `(1+ i sqrt3)/( sqrt3 + i )` is

A

`(pi)/(6)`

B

`(pi)/(3)`

C

`0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the amplitude of the complex number \(\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\), we can follow these steps: ### Step 1: Identify the complex number We start with the complex number: \[ z = \frac{1 + i\sqrt{3}}{\sqrt{3} + i} \] ### Step 2: Multiply by the conjugate of the denominator To simplify this expression, we multiply the numerator and the denominator by the conjugate of the denominator, which is \(\sqrt{3} - i\): \[ z = \frac{(1 + i\sqrt{3})(\sqrt{3} - i)}{(\sqrt{3} + i)(\sqrt{3} - i)} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (\sqrt{3} + i)(\sqrt{3} - i) = \sqrt{3}^2 - i^2 = 3 - (-1) = 3 + 1 = 4 \] ### Step 4: Simplify the numerator Now, we simplify the numerator: \[ (1 + i\sqrt{3})(\sqrt{3} - i) = 1 \cdot \sqrt{3} + 1 \cdot (-i) + i\sqrt{3} \cdot \sqrt{3} + i\sqrt{3} \cdot (-i) \] Calculating each term: \[ = \sqrt{3} - i + 3i - \sqrt{3} = \sqrt{3} - \sqrt{3} + (3i - i) = 2i \] ### Step 5: Combine the results Now we can combine the results: \[ z = \frac{2i}{4} = \frac{i}{2} \] ### Step 6: Write in standard form The complex number in standard form is: \[ z = 0 + \frac{1}{2}i \] ### Step 7: Find the amplitude The amplitude (or argument) \(\theta\) of a complex number \(z = x + iy\) is given by: \[ \tan(\theta) = \frac{y}{x} \] In our case, \(x = 0\) and \(y = \frac{1}{2}\). Thus: \[ \tan(\theta) = \frac{\frac{1}{2}}{0} \] Since the real part \(x = 0\), the angle \(\theta\) is \(\frac{\pi}{2}\) (90 degrees). ### Final Answer The amplitude of \(\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\) is: \[ \theta = \frac{\pi}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

The amplitude of (1+i sqrt(3))/(sqrt(3)+i) is (pi)/(3) b.-(pi)/(6) c.(pi)/(3) d.(pi)/(6)

Amplitude of (1+sqrt3i)/(sqrt3+1) is

2 - sqrt3 i - sqrt2

2 - sqrt3 i - sqrt2

log((1+i sqrt(3))/(1-i sqrt(3)))

(sqrt3+i)/(-1-isqrt3)=?

The modulus of (sqrt(3)+i)/((1+i)(1+sqrt(3)i)) is