Home
Class 12
MATHS
Let x = alpha + beta, y = alpha omega + ...

Let `x = alpha + beta, y = alpha omega + beta omega ^(2), z = alpha omega ^(2) + beta omega, omega ` being an imaginary cube root of unity. Product of xyz is

A

`alpha ^(2) + beta ^(2)`

B

`alpha ^(2) - beta ^(2)`

C

`alpha ^(3) + beta ^(3)`

D

`alpha ^(3) - beta ^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product \( xyz \) where: - \( x = \alpha + \beta \) - \( y = \alpha \omega + \beta \omega^2 \) - \( z = \alpha \omega^2 + \beta \omega \) Here, \( \omega \) is an imaginary cube root of unity, satisfying \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). ### Step-by-Step Solution: 1. **Write down the expressions for \( x \), \( y \), and \( z \)**: \[ x = \alpha + \beta \] \[ y = \alpha \omega + \beta \omega^2 \] \[ z = \alpha \omega^2 + \beta \omega \] 2. **Calculate the product \( xyz \)**: \[ xyz = (\alpha + \beta)(\alpha \omega + \beta \omega^2)(\alpha \omega^2 + \beta \omega) \] 3. **Expand the product**: To expand \( (y)(z) \): \[ yz = (\alpha \omega + \beta \omega^2)(\alpha \omega^2 + \beta \omega) \] Expanding this gives: \[ = \alpha^2 \omega^3 + \alpha \beta \omega^2 \cdot \omega + \beta \alpha \omega^2 \cdot \omega^2 + \beta^2 \omega^3 \] Using \( \omega^3 = 1 \): \[ = \alpha^2 + \alpha \beta \omega + \beta \alpha \omega^2 + \beta^2 \] 4. **Combine terms**: \[ yz = \alpha^2 + \beta^2 + \alpha \beta (\omega + \omega^2) \] Since \( \omega + \omega^2 = -1 \): \[ = \alpha^2 + \beta^2 - \alpha \beta \] 5. **Now multiply by \( x \)**: \[ xyz = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha \beta) \] Expanding this: \[ = \alpha(\alpha^2 + \beta^2 - \alpha \beta) + \beta(\alpha^2 + \beta^2 - \alpha \beta) \] \[ = \alpha^3 + \alpha \beta^2 - \alpha^2 \beta + \beta \alpha^2 + \beta^3 - \alpha \beta^2 \] \[ = \alpha^3 + \beta^3 \] 6. **Final Result**: Therefore, the product \( xyz \) simplifies to: \[ xyz = \alpha^3 + \beta^3 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

If x=p+q,y=p omega+q omega^(2), and z=p omega^(2)+q omega where omega is a complex cube root of unity then xyz=

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

If w be imaginary cube root of unity then (1+w-w^(2))^(7) equals:

The area of a quadrilateral whose vertices are 1,i,omega,omega^(2), where (omega!=1) is a imaginary cube root of unity, is

If omega is an imaginary cube root of unity, then (1+omega-omega^(2))^(7) equals

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4 .