Home
Class 12
MATHS
Let alpha, beta, gamma and delta be fou...

Let `alpha, beta, gamma` and `delta` be four positive real numbers such that their product is unity, then the least value of `(1 + alpha)(1+beta)(1+gamma)(1+delta)` is

A

6

B

16

C

0

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of \( (1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta) \) given that \( \alpha, \beta, \gamma, \delta \) are positive real numbers such that their product is unity (\( \alpha \beta \gamma \delta = 1 \)), we can use the AM-GM inequality. ### Step-by-Step Solution: 1. **Apply the AM-GM Inequality**: The Arithmetic Mean-Geometric Mean (AM-GM) inequality states that for any non-negative real numbers \( x_1, x_2, \ldots, x_n \): \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \] with equality when \( x_1 = x_2 = \ldots = x_n \). 2. **Set Up the Terms**: We can rewrite \( (1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta) \) as: \[ 1 + \alpha + \beta + \gamma + \delta + (\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta) + (\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta) + \alpha\beta\gamma\delta \] 3. **Use the Condition \( \alpha \beta \gamma \delta = 1 \)**: Since \( \alpha \beta \gamma \delta = 1 \), we can express the product \( \alpha\beta\gamma\delta \) as \( 1 \). 4. **Apply AM-GM to Each Term**: - For \( \alpha, \beta, \gamma, \delta \): \[ \frac{\alpha + \beta + \gamma + \delta}{4} \geq \sqrt[4]{\alpha \beta \gamma \delta} = \sqrt[4]{1} = 1 \] Hence, \( \alpha + \beta + \gamma + \delta \geq 4 \). - For \( 1 + \alpha, 1 + \beta, 1 + \gamma, 1 + \delta \): \[ \frac{(1 + \alpha) + (1 + \beta) + (1 + \gamma) + (1 + \delta)}{4} \geq \sqrt[4]{(1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta)} \] This leads to: \[ \frac{4 + \alpha + \beta + \gamma + \delta}{4} \geq \sqrt[4]{(1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta)} \] 5. **Combine Results**: From the previous steps, we have: \[ \frac{4 + \alpha + \beta + \gamma + \delta}{4} \geq \sqrt[4]{(1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta)} \] Since \( \alpha + \beta + \gamma + \delta \geq 4 \), we can substitute: \[ \frac{4 + 4}{4} = 2 \geq \sqrt[4]{(1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta)} \] 6. **Raise Both Sides to the Fourth Power**: \[ 16 \geq (1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta) \] 7. **Conclusion**: The least value of \( (1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta) \) is \( 16 \), which occurs when \( \alpha = \beta = \gamma = \delta = 1 \). ### Final Answer: The least value of \( (1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta) \) is \( \boxed{16} \).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|18 Videos
  • RECTANGULAR COORDINATES AND STRAIGHT LINE

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|16 Videos
  • SETS, RELATIONS AND FUNCTIONS

    BITSAT GUIDE|Exercise BITSAT Archives|19 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta,gamma and delta are four positive real numbers such that their product is unity,then the least value of (1+alpha)(1+beta)(1+gamma)(1+delta) is :

Let alpha,beta,gamma,delta be four real numbers such that alpha^(2)+gamma^(2)=9 and beta^(2)+delta^(2)=1 ,then the maximum value of 3(alpha beta-gamma delta)+4(alpha delta+beta gamma) is

If alpha,beta,gamma,delta are four complex numbers such that (gamma)/(delta) is real and alpha delta-beta gamma!=0 then z=(alpha+beta t)/(gamma+delta t) represents a

If alpha,beta,gamma and delta are roots of equation x^(4)-7x^(2)+x-5=0, then the value of (alpha+beta+gamma)(alpha+beta+delta)(beta+gamma+delta)(alpha+gamma+delta) is equal to

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is

Let sin^(-1)alpha+sin^(-1)beta+sin^(-1)gamma=pi and alpha, beta, gamma are non zero real numbers such that (alpha+beta+gamma)(alpha+beta-gamma)=3alphabeta then value of gamma

Let alpha , beta , gamma , delta be real numbers such that alpha^(2) +beta^(2) +gamma^(2) != 0 and alpha +gamma = 1 . Supose the point (3,2,-1) is the mirror image of the point (1,0,-1) with respect to the planet alphax + beta y + gammaz = delta . Then which of the following statements is/are TRUE ?

BITSAT GUIDE-SEQUENCES AND SERIES -BITSAT ARCHIVES
  1. If p, q, r and s are positive real numbers such that p+ q + r + s = 2,...

    Text Solution

    |

  2. Sum of the series 1 + 2.2 + 3.2^(2) + 4.2^(3)+…+ 100.2^(99) is

    Text Solution

    |

  3. Find the sum to n terms of the series 5 + 55 + 555 + ...

    Text Solution

    |

  4. If a, b c are in GP and a^((1)/(x)) =b^((1)/(y)) =c^((1)/(z)), then x...

    Text Solution

    |

  5. The sum of the first n terms of the series (1)/(2)+(3)/(4)+(7)/(8)+(15...

    Text Solution

    |

  6. The sum of 0.2 +0.22+0.222+ … to n terms is equal to

    Text Solution

    |

  7. If AM and HM between two numbers are 27 and 12 respectively, then thei...

    Text Solution

    |

  8. The value of (2)/(1!) + (2+4)/(2!) + (2+4+6)/(3!) + … is

    Text Solution

    |

  9. IF a(1),a(2),a(3),"...."a(10) be in AP and h(1),h(2),h(3),"...."h(10) ...

    Text Solution

    |

  10. Let n is a rational number and x is a real number such that |x|lt1, th...

    Text Solution

    |

  11. The HM of two numbers is 4. If their arithmetic mean A and geometric m...

    Text Solution

    |

  12. For any integer n ge 1, the sum sum(k=1)^(n) k (k + 2) is equal to

    Text Solution

    |

  13. In DeltaABC, if (1)/(b+c)+(1)/(c+a)=(3)/(a+b+c), then C is equal to

    Text Solution

    |

  14. What is the sum of n terms of the series sqrt(2)+sqrt(8)+sqrt(18)+sqrt...

    Text Solution

    |

  15. Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n t...

    Text Solution

    |

  16. If a = log(2)3, b = log(2) 5 and c = log(7)2, then log(140) 63 in term...

    Text Solution

    |

  17. When 2^(31) is divided by 5 the remainder is

    Text Solution

    |

  18. Let alpha, beta, gamma and delta be four positive real numbers such t...

    Text Solution

    |