Home
Class 12
MATHS
""^(n)C(r)+2""^(n)C(r-1)+""^(n)C(r-2) is...

`""^(n)C_(r)+2""^(n)C_(r-1)+""^(n)C_(r-2)` is equal to

A

`""^(n+1)C_(r)`

B

`""^(n+1)C_(r+1)`

C

`""^(n+2)C_(r)`

D

`""^(n+2)C_(r+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2} \), we can use the properties of binomial coefficients. ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficient**: Recall that \( \binom{n}{r} \) represents the number of ways to choose \( r \) elements from a set of \( n \) elements. 2. **Rearranging the Expression**: The expression can be rewritten as: \[ \binom{n}{r} + \binom{n}{r-1} + \binom{n}{r-1} + \binom{n}{r-2} \] This shows that we have two instances of \( \binom{n}{r-1} \). 3. **Combining Like Terms**: Combine the terms: \[ \binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2} \] 4. **Using the Hockey Stick Identity**: According to the hockey stick identity in combinatorics, we have: \[ \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r} \] Therefore, we can apply this identity to our expression: \[ \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r} \] Thus, we can rewrite the expression as: \[ \binom{n+1}{r} + \binom{n}{r-1} \] 5. **Applying the Hockey Stick Identity Again**: Now, we can apply the hockey stick identity again: \[ \binom{n+1}{r} + \binom{n}{r-1} = \binom{n+1}{r} + \binom{n+1}{r-1} = \binom{n+2}{r} \] 6. **Final Result**: Therefore, the final result is: \[ \binom{n+2}{r} \] ### Conclusion: Thus, the expression \( \binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2} \) simplifies to \( \binom{n+2}{r} \).
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos
  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • PROBABILITY

    BITSAT GUIDE|Exercise BITSET ARCHIVES|16 Videos

Similar Questions

Explore conceptually related problems

The vaule of sum_(r=0)^(n-1) (""^(n)C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

""^(n)C_(r)+2""^(n)C_(r-1)+C_(r-2) is equal to

If n in N, then sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .