Home
Class 12
MATHS
If ""^(n)C(12)=""^(n)C(6), then ""^(n )C...

If `""^(n)C_(12)=""^(n)C_(6)`, then `""^(n )C_(2)` is equal to

A

72

B

153

C

306

D

2556

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given in the question: \[ {n \choose 12} = {n \choose 6} \] ### Step 1: Use the property of combinations We know that the combination formula has the property: \[ {n \choose r} = {n \choose n-r} \] Applying this property, we can rewrite \( {n \choose 6} \) as: \[ {n \choose 6} = {n \choose n-6} \] ### Step 2: Set up the equation From the equality \( {n \choose 12} = {n \choose 6} \), we can also express \( {n \choose 12} \) using the property: \[ {n \choose 12} = {n \choose n-12} \] Thus, we have: \[ {n \choose n-12} = {n \choose n-6} \] ### Step 3: Equate the two expressions Since both expressions equal \( {n \choose 6} \), we can equate the two: \[ n - 12 = n - 6 \] ### Step 4: Solve for \( n \) From the equation above, we simplify: \[ -12 = -6 \] This is not possible, so we need to find another way to relate \( n \). Instead, we can use the fact that: \[ 12 + 6 = n \] Thus: \[ n = 18 \] ### Step 5: Find \( {n \choose 2} \) Now that we have \( n = 18 \), we can find \( {n \choose 2} \): \[ {18 \choose 2} = \frac{18!}{2!(18-2)!} = \frac{18!}{2! \cdot 16!} \] ### Step 6: Simplify the expression This simplifies to: \[ {18 \choose 2} = \frac{18 \times 17 \times 16!}{2 \times 16!} = \frac{18 \times 17}{2} = \frac{306}{2} = 153 \] ### Final Answer Thus, \( {n \choose 2} \) is equal to: \[ \boxed{153} \] ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos
  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • PROBABILITY

    BITSAT GUIDE|Exercise BITSET ARCHIVES|16 Videos

Similar Questions

Explore conceptually related problems

If ^(n)C_(8)=^(n)C_(6), then find ^(n)C_(2)

If .^(n)C_(8)=.^(n)C_(6) , then find .^(n)C_(2) .

Let n in N and [x] denote the greatest integer less than or equal to x. If the sum of (n + 1) terms ""^(n) C_(0) , 3 .""^(n)C_(1) , 5. :""^(n) C_(2) , & .""^(n)C_(3) is equal to 2 ^(100) . 101 then 2 [(n-1)/(2)] is equal to _________

If ""^(n)C_(12)=""^(n)C_(8), then n is equal to

(i) If ""^(n)C_(8)= ""^(n)C_(2) , find ""^(n)C_(2) . (ii) If ""^(n)C_(10)= ""^(n)C_(12) , determine n and hence ""^(n)C_(5) . (iii) If ""^(n)C_(9)= ""^(n)C_(8) , find ""^(n)C_(17) .

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

If .^(n)C_(8)=.^(n)C_(6) , find .^(n)C_(3) .