Home
Class 12
MATHS
The vaule of sum(r=0)^(n-1) (""^(C(r))...

The vaule of ` sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1))` is equal to

A

`(n)/(2)`

B

`(n+1)/(2)`

C

`(n-1)/(2)`

D

2n

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos

Similar Questions

Explore conceptually related problems

The vaule of sum_(r=0)^(n-1) (""^(n)C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

The valur of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=0)^(n-1)(nC_(r))/(nC_(r)+^(n)C_(r+1)) is eqaul to

If n in N, then sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=0)^(n)C_(r)/(^(n)C_(r)+^(n)C_(r+1)) equals a.n+1 b.n/2 c.n+2 d.none of these