Home
Class 12
MATHS
If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t...

If `s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r))`, then `(t_(n))/(s_(n))` is equal to

A

`(n)/(2)`

B

`(n)/(2)-1`

C

`n-1`

D

`(2n-1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos

Similar Questions

Explore conceptually related problems

If S_(n)=sum_(r=0)^(n)(1)/(nC_(r)) and sum_(r=0)^(n)(r)/(nC_(r)), then (t_(n))/(S_(n))=

If a_(n)=sum_(r=0)^(n)(1)/(*^(n)C_(r)), the value of sum_(r=0)^(n)(n-2r)/(n^(n)C_(r))

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If s_(n)=sum_(r

If sum_(r=0)^(n)(2r)/(C(n,r))=sum_(r=0)^(n)(n^(3)-3n+3)/(C)(n,r)