Home
Class 12
MATHS
If C(1), C(2), C(3),…C(n) denote the coe...

If `C_(1), C_(2), C_(3),…C_(n)` denote the coefficients in the binomial expansion of `(1+x)^(n)`, then the value of `""^(n)C_(1) + 2.""^(n)C_(2) + 3.""^(n)C_(3) + ….+ n. ""^(n)C_(n)` is

A

`(n-1)2^(n)`

B

`n.2^(n-1)`

C

`n.2^(n+1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ 1 \cdot C_1 + 2 \cdot C_2 + 3 \cdot C_3 + \ldots + n \cdot C_n \] where \( C_k = \binom{n}{k} \) are the coefficients in the binomial expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Write the Binomial Expansion**: The binomial expansion of \( (1+x)^n \) is given by: \[ (1+x)^n = \sum_{k=0}^{n} C_k x^k = \sum_{k=0}^{n} \binom{n}{k} x^k \] 2. **Differentiate the Expansion**: To find the weighted sum \( 1 \cdot C_1 + 2 \cdot C_2 + \ldots + n \cdot C_n \), we differentiate the binomial expansion with respect to \( x \): \[ \frac{d}{dx}[(1+x)^n] = n(1+x)^{n-1} \] On the right side, differentiating the series gives: \[ \sum_{k=1}^{n} k \cdot C_k x^{k-1} = \sum_{k=1}^{n} k \cdot \binom{n}{k} x^{k-1} \] 3. **Substitute \( x = 1 \)**: Now, we substitute \( x = 1 \) into both sides: \[ n(1+1)^{n-1} = n \cdot 2^{n-1} \] For the series, substituting \( x = 1 \) gives: \[ \sum_{k=1}^{n} k \cdot C_k = 1 \cdot C_1 + 2 \cdot C_2 + \ldots + n \cdot C_n \] 4. **Combine Results**: Therefore, we have: \[ 1 \cdot C_1 + 2 \cdot C_2 + \ldots + n \cdot C_n = n \cdot 2^{n-1} \] ### Final Result: Thus, the value of \( 1 \cdot C_1 + 2 \cdot C_2 + 3 \cdot C_3 + \ldots + n \cdot C_n \) is: \[ \boxed{n \cdot 2^{n-1}} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos

Similar Questions

Explore conceptually related problems

If C_(0),C_(1),C_(2)..C_(n) denote the coefficients in the binomial expansion of (1+x)^(n), then C_(0)+2.C_(1)+3.C_(2)+.(n+1)C_(n)

If C_(0), C_(1), C_(2), …, C_(n) are the coefficients in the expansion of (1+x)^(n) , then what is the value of C_(1) +C_(2) +C_(3) + …. + C_(n) ?

If C_(o)C_(1),C_(2),......,C_(n) denote the binomial coefficients in the expansion of (1+x)^(n), then the value of sum_(r=0)^(n)(r+1)C_(r) is

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .