Home
Class 12
MATHS
If A = [(0,1),(1,1)] and B = [(0,-1),(1,...

If A = `[(0,1),(1,1)]` and B =` [(0,-1),(1,0)]`then which of the following is correct ?

A

(A+B) . (A-B) = `A^(2) + B^(2) `

B

`(A+B) . (A-B) = A^(2) -B^(2)`

C

(A+B) . (A-B) =I

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions involving the matrices A and B. Let's go through the steps systematically. ### Given Matrices: Let \[ A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \] and \[ B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] ### Step 1: Calculate \( A + B \) To find \( A + B \), we add the corresponding elements of matrices A and B. \[ A + B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 + 0 & 1 + (-1) \\ 1 + 1 & 1 + 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A - B \) Now, we calculate \( A - B \) by subtracting the corresponding elements of B from A. \[ A - B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 - 0 & 1 - (-1) \\ 1 - 1 & 1 - 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} \] ### Step 3: Calculate \( A^2 \) Next, we compute \( A^2 \) by multiplying matrix A by itself. \[ A^2 = A \cdot A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 \cdot 0 + 1 \cdot 1 & 0 \cdot 1 + 1 \cdot 1 \\ 1 \cdot 0 + 1 \cdot 1 & 1 \cdot 1 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \] ### Step 4: Calculate \( B^2 \) Now, we compute \( B^2 \) by multiplying matrix B by itself. \[ B^2 = B \cdot B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 \cdot 0 + (-1) \cdot 1 & 0 \cdot (-1) + (-1) \cdot 0 \\ 1 \cdot 0 + 0 \cdot 1 & 1 \cdot (-1) + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] ### Step 5: Check the Options Now we need to check the options given in the problem: 1. **Option 1**: \( (A + B)(A - B) = A^2 + B^2 \) 2. **Option 2**: \( (A + B)(A - B) = A^2 - B^2 \) 3. **Option 3**: \( (A + B)(A - B) = I \) (Identity matrix) 4. **Option 4**: None of these #### Calculate \( (A + B)(A - B) \) Now we compute \( (A + B)(A - B) \): \[ (A + B)(A - B) = \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 \cdot 0 + 0 \cdot 0 & 0 \cdot 2 + 0 \cdot 1 \\ 2 \cdot 0 + 1 \cdot 0 & 2 \cdot 2 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix} \] #### Compare with \( A^2 + B^2 \) Now, we compute \( A^2 + B^2 \): \[ A^2 + B^2 = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 - 1 & 1 + 0 \\ 1 + 0 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \] #### Compare with \( A^2 - B^2 \) Now, we compute \( A^2 - B^2 \): \[ A^2 - B^2 = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 + 1 & 1 - 0 \\ 1 - 0 & 2 + 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \] ### Conclusion Since \( (A + B)(A - B) \) does not equal \( A^2 + B^2 \) or \( A^2 - B^2 \) or the identity matrix, we conclude that the correct option is **None of these**.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

If A = [(0,-1),(1,0)] then which one of the following statement is not correct ?

If A=[(0,-1),(1,0)] , then which one of the following statements is not correct ?

Let x_(1) 0 then which of the following are correct

If A=[{:(0,1),(-1,0):}] B=[{:(i,0),(0,-i):}] C=[{:(0,-i),(-i,0):}] then which one of the following is not correct ?

If A[{:(i,0),(0,-i)]B=[{:(0,-1),(1,0)] and C =[{:(0,i),(i,0):}] where i= sqrt(-1) . Then which one of the following is correct ?

If A=[{:(0,1),(-1,0)],B=[{:(i,0),(0,-i):}],C=[{:(0,-i),(-i,0):}] , then which one of the following in not correct ?

For the matrix A=[{:(1,1,0),(1,2,1),(2,1,0):}] , which of the following is correct ?