Home
Class 12
MATHS
If A = [(1,0,2),(0,2,1),(2,0,3)] then th...

If A = `[(1,0,2),(0,2,1),(2,0,3)]` then the value of `A^(3) - 6A^(2) +7A+2I` is

A

I

B

0

C

`-2I`

D

2I

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( A^3 - 6A^2 + 7A + 2I \) for the matrix \( A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \( 1 \cdot 1 + 0 \cdot 0 + 2 \cdot 2 = 1 + 0 + 4 = 5 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 2 + 2 \cdot 0 = 0 + 0 + 0 = 0 \) - First row, third column: \( 1 \cdot 2 + 0 \cdot 1 + 2 \cdot 3 = 2 + 0 + 6 = 8 \) - Second row, first column: \( 0 \cdot 1 + 2 \cdot 0 + 1 \cdot 2 = 0 + 0 + 2 = 2 \) - Second row, second column: \( 0 \cdot 0 + 2 \cdot 2 + 1 \cdot 0 = 0 + 4 + 0 = 4 \) - Second row, third column: \( 0 \cdot 2 + 2 \cdot 1 + 1 \cdot 3 = 0 + 2 + 3 = 5 \) - Third row, first column: \( 2 \cdot 1 + 0 \cdot 0 + 3 \cdot 2 = 2 + 0 + 6 = 8 \) - Third row, second column: \( 2 \cdot 0 + 0 \cdot 2 + 3 \cdot 0 = 0 + 0 + 0 = 0 \) - Third row, third column: \( 2 \cdot 2 + 0 \cdot 1 + 3 \cdot 3 = 4 + 0 + 9 = 13 \) Thus, we have: \[ A^2 = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \] Calculating the elements of \( A^3 \): - First row, first column: \( 5 \cdot 1 + 0 \cdot 0 + 8 \cdot 2 = 5 + 0 + 16 = 21 \) - First row, second column: \( 5 \cdot 0 + 0 \cdot 2 + 8 \cdot 0 = 0 + 0 + 0 = 0 \) - First row, third column: \( 5 \cdot 2 + 0 \cdot 1 + 8 \cdot 3 = 10 + 0 + 24 = 34 \) - Second row, first column: \( 2 \cdot 1 + 4 \cdot 0 + 5 \cdot 2 = 2 + 0 + 10 = 12 \) - Second row, second column: \( 2 \cdot 0 + 4 \cdot 2 + 5 \cdot 0 = 0 + 8 + 0 = 8 \) - Second row, third column: \( 2 \cdot 2 + 4 \cdot 1 + 5 \cdot 3 = 4 + 4 + 15 = 23 \) - Third row, first column: \( 8 \cdot 1 + 0 \cdot 0 + 13 \cdot 2 = 8 + 0 + 26 = 34 \) - Third row, second column: \( 8 \cdot 0 + 0 \cdot 2 + 13 \cdot 0 = 0 + 0 + 0 = 0 \) - Third row, third column: \( 8 \cdot 2 + 0 \cdot 1 + 13 \cdot 3 = 16 + 0 + 39 = 55 \) Thus, we have: \[ A^3 = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} \] ### Step 3: Calculate \( 6A^2 \) Now we calculate \( 6A^2 \): \[ 6A^2 = 6 \cdot \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} = \begin{pmatrix} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{pmatrix} \] ### Step 4: Calculate \( 7A \) Next, we calculate \( 7A \): \[ 7A = 7 \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix} \] ### Step 5: Calculate \( 2I \) The identity matrix \( I \) for a \( 3 \times 3 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ 2I = 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \] ### Step 6: Combine all parts to find \( A^3 - 6A^2 + 7A + 2I \) Now we will combine all the calculated matrices: \[ A^3 - 6A^2 + 7A + 2I = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} - \begin{pmatrix} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{pmatrix} + \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \] Calculating each element: - First row: - \( 21 - 30 + 7 + 2 = 0 \) - \( 0 - 0 + 0 + 0 = 0 \) - \( 34 - 48 + 14 + 0 = 0 \) - Second row: - \( 12 - 12 + 0 + 0 = 0 \) - \( 8 - 24 + 14 + 2 = 0 \) - \( 23 - 30 + 7 + 0 = 0 \) - Third row: - \( 34 - 48 + 14 + 0 = 0 \) - \( 0 - 0 + 0 + 0 = 0 \) - \( 55 - 78 + 21 + 2 = 0 \) Thus, we have: \[ A^3 - 6A^2 + 7A + 2I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Final Answer The value of \( A^3 - 6A^2 + 7A + 2I \) is the zero matrix: \[ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

If A = [(-1,2),(3,1)],B=[(1,0),(-1,0)] then the value of 2A+B+2I=

If A=[{:(1,0,2),(0,2,1),(2,0,3):}] and A^(3)-6A^(2)+7A+kI_(3)=O , find k.

If A[(1,0,2),(0,2,1),(2,0,3)] and A^(3)-6A^(2)+7A+kI_(3)=O find k.

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find value of A^(2)-5A+6I

If A= [{:(,1,0,2),(,0,2,1),(,2,0,3):}] is a root of polynomial x^(3)-6x^(2)+7x+k=0 then the value of k is

If A=[[1,0,20,2,12,0,3]], prove that A^(3)-6A^(2)+7A+2I=0

If A=((1,0,0),(0,2,1),(1,0,3)) then (A-I)(A-2I)(A-3I)=

if A=[[1,22,3]] and A^(2)-kA-I_(2)=0 then the value of k is