Home
Class 12
MATHS
If A = [(1,0),(1,1)] then A^(n) is equal...

If A = `[(1,0),(1,1)]` then `A^(n)` is equal to

A

`2^(n-1) A - (n-1)I`

B

`nA-(n-1)I`

C

`2^(n-1) A + (n-1)I`

D

`nA+ (n-1)I`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,10,1]], then A^(n) is equal to

If A=|[1,a],[0,1]| , then A^(n) is equal to

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

IF A = [(1,0),(1,1)] then for all natural numbers n A^n is equal to (A) [(1,0),(1,n)] (B) [(n,0),(1,1)] (C) [(1,0),(n,1)] (D) none of these

if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

If A=[[i,0],[0,i]];i=sqrt(-1), then A^(n) is equal to

If A=[[(1)/(3),0,0],[0,(1)/(4),0],[0,0,(1)/(5)]] then sum_(n=1)^(oo)A^(n) is equal to

If A=[(1,1),(1,0)] and n epsilon N then A^n is equal to (A) 2^(n-1)A (B) 2^nA (C) nA (D) none of these

If n-(1)/(n)=(1)/(4) then n+(1)/(n) is equal to:

If A= [(1,0),(1,1)] then (A) A^-n=[(1,0),(-n,1)] , n epsilon N (B) lim_(n rarr 00)1/n^2 A^-n = [(0,0),(0,0)] (C) lim_(nrarroo)1/n A^-n = [(0,0),(-1,0)] (D) none of these