Home
Class 12
MATHS
If A= [ (1,2,-1),(-1,1,2),(2,-1,1)] then...

If A= `[ (1,2,-1),(-1,1,2),(2,-1,1)]` then det {adj (A)} equals

A

`(14)^(2)`

B

`(13)^(2)`

C

`(14)^(3)`

D

`(13)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the adjoint of matrix \( A \), we can use the property that states: \[ \text{det}(\text{adj}(A)) = (\text{det}(A))^{n-1} \] where \( n \) is the order of the matrix \( A \). ### Step 1: Identify the matrix \( A \) Given: \[ A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{pmatrix} \] ### Step 2: Calculate the determinant of matrix \( A \) To calculate \( \text{det}(A) \), we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where: \[ A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: - \( a = 1, b = 2, c = -1 \) - \( d = -1, e = 1, f = 2 \) - \( g = 2, h = -1, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 1(1 \cdot 1 - 2 \cdot (-1)) - 2((-1) \cdot 1 - 2 \cdot 2) + (-1)((-1) \cdot (-1) - 1 \cdot 2) \] Calculating each term: 1. \( 1(1 + 2) = 1 \cdot 3 = 3 \) 2. \( -2(-1 - 4) = -2 \cdot (-5) = 10 \) 3. \( -1(1 - 2) = -1 \cdot (-1) = 1 \) Putting it all together: \[ \text{det}(A) = 3 + 10 + 1 = 14 \] ### Step 3: Determine the order of the matrix \( A \) The matrix \( A \) is a \( 3 \times 3 \) matrix, so \( n = 3 \). ### Step 4: Calculate \( \text{det}(\text{adj}(A)) \) Using the property mentioned earlier: \[ \text{det}(\text{adj}(A)) = (\text{det}(A))^{n-1} = (14)^{3-1} = (14)^{2} = 196 \] ### Final Answer \[ \text{det}(\text{adj}(A)) = 196 \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (A)) is

If A={:[(1,2,-1),(-1,2,2),(2,-1,1)],:} then : |adj(adj.A)|=

If A=[(1,2,0),(-1,1,2),(2,-1,1)] then det (Adj(AdjA))= (A) 13 (B) 13^2 (C) 13^4 (D) none of these

If A=[[1,2,-1-1,1,22,-1,1]], then det (adj (adj A)

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =