Home
Class 12
MATHS
If A = [ (1,-1,1),(2,1,-3),(1,1,1)] " an...

If A = `[ (1,-1,1),(2,1,-3),(1,1,1)] " and " A^(-1) = (1)/(10) [(4,2,2),(-5,0,alpha),(1,-2,1)] ` then `alpha` is equal to

A

`-2`

B

5

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha \) in the given matrices, we will follow the steps of calculating the determinant of matrix \( A \) and then using the formula for the inverse of a matrix. ### Step 1: Define the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix} \] ### Step 2: Calculate the determinant of matrix \( A \) The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \( A \): - \( a = 1, b = -1, c = 1 \) - \( d = 2, e = 1, f = -3 \) - \( g = 1, h = 1, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 1(1 \cdot 1 - (-3) \cdot 1) - (-1)(2 \cdot 1 - (-3) \cdot 1) + 1(2 \cdot 1 - 1 \cdot 1) \] \[ = 1(1 + 3) + 1(2 + 3) + 1(2 - 1) \] \[ = 1 \cdot 4 + 1 \cdot 5 + 1 \cdot 1 \] \[ = 4 + 5 + 1 = 10 \] ### Step 3: Find the adjoint of matrix \( A \) To find the adjoint, we need to calculate the cofactor matrix and then take its transpose. #### Step 3.1: Calculate the minors and cofactors 1. **Minor \( M_{11} \)**: \[ M_{11} = \begin{vmatrix} 1 & -3 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-3)(1) = 1 + 3 = 4 \] **Cofactor \( C_{11} = M_{11} = 4 \)** 2. **Minor \( M_{12} \)**: \[ M_{12} = \begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} = (2)(1) - (-3)(1) = 2 + 3 = 5 \] **Cofactor \( C_{12} = -M_{12} = -5 \)** 3. **Minor \( M_{13} \)**: \[ M_{13} = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (1)(1) = 2 - 1 = 1 \] **Cofactor \( C_{13} = M_{13} = 1 \)** 4. **Minor \( M_{21} \)**: \[ M_{21} = \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = (-1)(1) - (1)(1) = -1 - 1 = -2 \] **Cofactor \( C_{21} = -M_{21} = 2 \)** 5. **Minor \( M_{22} \)**: \[ M_{22} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = (1)(1) - (1)(1) = 1 - 1 = 0 \] **Cofactor \( C_{22} = M_{22} = 0 \)** 6. **Minor \( M_{23} \)**: \[ M_{23} = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-1)(1) = 1 + 1 = 2 \] **Cofactor \( C_{23} = -M_{23} = -2 \)** 7. **Minor \( M_{31} \)**: \[ M_{31} = \begin{vmatrix} -1 & 1 \\ 1 & -3 \end{vmatrix} = (-1)(-3) - (1)(1) = 3 - 1 = 2 \] **Cofactor \( C_{31} = M_{31} = 2 \)** 8. **Minor \( M_{32} \)**: \[ M_{32} = \begin{vmatrix} 1 & 1 \\ 2 & -3 \end{vmatrix} = (1)(-3) - (1)(2) = -3 - 2 = -5 \] **Cofactor \( C_{32} = -M_{32} = 5 \)** 9. **Minor \( M_{33} \)**: \[ M_{33} = \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-1)(2) = 1 + 2 = 3 \] **Cofactor \( C_{33} = M_{33} = 3 \)** #### Step 3.2: Construct the cofactor matrix The cofactor matrix is: \[ \text{Cofactor Matrix} = \begin{pmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{pmatrix} \] #### Step 3.3: Transpose the cofactor matrix to get the adjoint The adjoint of \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{pmatrix} \] ### Step 4: Calculate the inverse of matrix \( A \) Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{pmatrix} \] ### Step 5: Compare with the given \( A^{-1} \) The given \( A^{-1} \) is: \[ A^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 1 \end{pmatrix} \] By comparing the second row of both matrices: \[ -5 = -5 \quad \text{and} \quad 0 = 0 \quad \text{and} \quad \alpha = 5 \] ### Conclusion Thus, the value of \( \alpha \) is: \[ \alpha = 5 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(1,-2,3)]. If B is the inverse of A, then alpha is :

Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and B=[(4,2,2),(-5,0,alpha),(1,-2,3)] If B is the inverse of matrix A , then alpha= (A) 2 (B) -2 (C) 5 (D) -5

If A and B are non - singular matrices of order three such that adj(AB)=[(1,1,1),(1,alpha, 1),(1,1,alpha)] and |B^(2)adjA|=alpha^(2)+3alpha-8 , then the value of alpha is equal to

What is (1 -sin^2alpha) (1+tan^2alpha) equal to?