Home
Class 12
MATHS
If x = cy + bz, y = az + cx and z = bx +...

If x = cy + bz, y = az + cx and z = bx + ay , where x, y and z are not all zero, then `a^(2)+b^(2)+c^(2)` is equal to

A

1+ 2abc

B

1− 2abc

C

1+ abc

D

abc-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given by the equations \( x = cy + bz \), \( y = az + cx \), and \( z = bx + ay \), we will express these equations in matrix form and find the determinant to derive the value of \( a^2 + b^2 + c^2 \). ### Step-by-Step Solution: 1. **Rearranging the equations**: We start by rewriting the equations in a standard form: \[ -cy - bz + x = 0 \] \[ -az - cx + y = 0 \] \[ -bx - ay + z = 0 \] 2. **Writing in matrix form**: We can express the system of equations in matrix form as follows: \[ \begin{pmatrix} 1 & -c & -b \\ -c & 1 & -a \\ -b & -a & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \] 3. **Finding the determinant**: For the system to have non-trivial solutions (where \( x, y, z \) are not all zero), the determinant of the coefficient matrix must be zero: \[ \text{Det} = \begin{vmatrix} 1 & -c & -b \\ -c & 1 & -a \\ -b & -a & 1 \end{vmatrix} = 0 \] 4. **Calculating the determinant**: We can calculate the determinant using the formula for a 3x3 matrix: \[ \text{Det} = 1 \cdot (1 \cdot 1 - (-a)(-b)) - (-c)(-c \cdot 1 - (-a)(-b)) - (-b)(-c(-a) - 1 \cdot (-b)) \] Simplifying this, we get: \[ = 1 - ab - c(1 - ab) + b(ac - 1) \] \[ = 1 - ab - c + abc + b(ac - 1) \] After further simplification, we arrive at: \[ = 1 - a^2 - b^2 - c^2 + 2abc = 0 \] 5. **Solving for \( a^2 + b^2 + c^2 \)**: From the equation we derived: \[ 1 - a^2 - b^2 - c^2 + 2abc = 0 \] Rearranging gives: \[ a^2 + b^2 + c^2 = 1 + 2abc \] ### Final Answer: Thus, the value of \( a^2 + b^2 + c^2 \) is: \[ \boxed{1 + 2abc} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

Given x = cy +bz, y = az + cx, z = bx+ ay where x,y and z are not all zero, then a^2 + b^2 + c^2 + 2abc = ___________

Given , x=cy+bz , y=az+cx , z=bx+ay , where x,y,z are not all zero , prove that a^2+b^2+c^2+2ab=1

If =cy+bz,y=az+cx,z=x+ay, wherex ,yx=cy+bz,y=az+cx,z=x+ay, wherex ,y are not all zeros,then find the value of a^(2)+b^(2)+c^(2)+2abc

If the planes x=cy+bz,y=az+cx and z=bx+ay pass through a line then a^(2)+b^(2)+c^(2)+2abc is equal to

If planes x- cy - bz =0 , cx-y+az =0 and bx + ay - z=0 pass through a staight line the a^(2) +b^(2) +c^(2)=

Let a, x, y, z be real numbers satisfying the equations ax+ay=z x+ay=z x+ay=az, where x, y, z are not all zero, then the number of the possible values of a is