Home
Class 12
MATHS
If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then ...

If `A=[(3,-3,4),(2,-3,4),(0,-1,1)]`, then `A^(-1)=`

A

A

B

`A^(2)`

C

`A^(3)`

D

`A^(4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then show that A^(3)=A^(-1) .

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.

If A= [[3,-3,4],[2,-3,4],[0,-1,1]] then find A^(3)

Find the inverse of each of the matrices given below : A=[(3,-3,4),(2,-3,4),(0,-1,1)]

The adjoint matrix of [(3,-3,4),(2,-3,4),(0,-1,1)] is

If A = [(0,4,3),(1,-3,-3),(-1,4,4)] , then find A^(2) and hence find A^(-1)

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]