Home
Class 12
MATHS
If A = [ (-5,-8,0),(3,5,0),(1,2,-1)] the...

If A = `[ (-5,-8,0),(3,5,0),(1,2,-1)]` then A is

A

idempotent

B

nilpotent

C

involutory

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the matrix \( A \) given by \[ A = \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix} \] we will first compute \( A^2 \) and check if it is the zero matrix. If \( A^2 = 0 \), then \( A \) is a nilpotent matrix. ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix} \] ### Step 2: Perform the multiplication We will calculate each element of \( A^2 \): - **First row, first column**: \[ (-5)(-5) + (-8)(3) + (0)(1) = 25 - 24 + 0 = 1 \] - **First row, second column**: \[ (-5)(-8) + (-8)(5) + (0)(2) = 40 - 40 + 0 = 0 \] - **First row, third column**: \[ (-5)(0) + (-8)(0) + (0)(-1) = 0 + 0 + 0 = 0 \] - **Second row, first column**: \[ (3)(-5) + (5)(3) + (0)(1) = -15 + 15 + 0 = 0 \] - **Second row, second column**: \[ (3)(-8) + (5)(5) + (0)(2) = -24 + 25 + 0 = 1 \] - **Second row, third column**: \[ (3)(0) + (5)(0) + (0)(-1) = 0 + 0 + 0 = 0 \] - **Third row, first column**: \[ (1)(-5) + (2)(3) + (-1)(1) = -5 + 6 - 1 = 0 \] - **Third row, second column**: \[ (1)(-8) + (2)(5) + (-1)(2) = -8 + 10 - 2 = 0 \] - **Third row, third column**: \[ (1)(0) + (2)(0) + (-1)(-1) = 0 + 0 + 1 = 1 \] ### Step 3: Assemble \( A^2 \) Combining all the calculated elements, we get: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Conclusion Since \( A^2 \) is not the zero matrix, we conclude that \( A \) is not a nilpotent matrix. ### Final Answer The matrix \( A \) is **not nilpotent**. ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

If matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] then find tr(A)+tr(A^(2))+te(A^(3))+…+tr(A^(100))

The matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

show that the matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is involutory.

If A=[[-5,-8,0],[3,5,0],[1,2,-1]], then transpose of A is

If, A=[(1,1,2),(0,-3,5),(-2,3,4)] ,then is 4A=[(4,4,8),(0,-12,20),(-8,12,16)] ?

[(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)] then, C_(2) rarr C_(2)-3C_(1) and C_(3) rarr C_(3) +2C_(1) gives

The matrix [(0,-5,8),(5,0,12),(-8,-12,0)] is a

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).