Home
Class 12
MATHS
If A = (a(ij))(2xx2) where a(ij) = i+j t...

If A = `(a_(ij))_(2xx2)` where `a_(ij) = i+j` then A is equal to

A

`[(1,1),(2,2)]`

B

`[(1,2),(1,2)]`

C

`[(1,4),(3,3)]`

D

`[(2,3),(3,4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A \) defined by \( a_{ij} = i + j \) for a \( 2 \times 2 \) matrix, we will calculate each element of the matrix step by step. ### Step-by-Step Solution: 1. **Define the Matrix Order**: The matrix \( A \) is of order \( 2 \times 2 \). This means it has 2 rows and 2 columns. 2. **Identify the Elements**: The elements of the matrix \( A \) are defined as \( a_{ij} = i + j \), where \( i \) is the row index and \( j \) is the column index. 3. **Calculate Each Element**: - For \( a_{11} \) (1st row, 1st column): \[ a_{11} = 1 + 1 = 2 \] - For \( a_{12} \) (1st row, 2nd column): \[ a_{12} = 1 + 2 = 3 \] - For \( a_{21} \) (2nd row, 1st column): \[ a_{21} = 2 + 1 = 3 \] - For \( a_{22} \) (2nd row, 2nd column): \[ a_{22} = 2 + 2 = 4 \] 4. **Construct the Matrix**: Now we can construct the matrix \( A \) using the calculated elements: \[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} \] ### Final Result: Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

If A = [a_(ij)]_(2xx2) , where a_(ij) = ((i + 2j)^(2))/(2 ) , then A is equal to

If matrix A=[a_(ij)]_(2X2') where a_(ij)={[1,i!=j0,i=j]}, then A^(2) is equal to

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

If matrix A=[a_(ij)]_(2xx2^(,)) where a_(ij)=1" if "i!=j =0" if "i=j then A^(2) is equal to :

If matrix A=([a_(ij)])_(2xx2), where a_(ij)={1,quad if quad i!=j0,quad if i+j, then A^(2) is equal to I( b) A(c)O(d)I

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

If A=[a_(ij)]_(n xx n,) where a_(ij)=i^(100)+j^(100) then lim_(n rarr oo)((sum_(i=1)^(n)a_(ij))/(n^(101))) equals