Home
Class 12
MATHS
If A= [(1,-2),(4,5)] and f(t) =t^(2) -3t...

If `A= [(1,-2),(4,5)]` and f(t) =`t^(2) -3t+7` then f(A) + `[ (3,6),(-12,-9)]` is equal to

A

`[(1,0),(0,1)]`

B

`[(0,0),(0,0)]`

C

`[(0,1),(1,0)]`

D

`[(1,1),(0,0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \( f(A) + \begin{pmatrix} 3 & 6 \\ -12 & -9 \end{pmatrix} \) where \( A = \begin{pmatrix} 1 & -2 \\ 4 & 5 \end{pmatrix} \) and \( f(t) = t^2 - 3t + 7 \). ### Step 1: Calculate \( A^2 \) First, we need to compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & -2 \\ 4 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 \\ 4 & 5 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + (-2) \cdot 4 = 1 - 8 = -7 \) - First row, second column: \( 1 \cdot (-2) + (-2) \cdot 5 = -2 - 10 = -12 \) - Second row, first column: \( 4 \cdot 1 + 5 \cdot 4 = 4 + 20 = 24 \) - Second row, second column: \( 4 \cdot (-2) + 5 \cdot 5 = -8 + 25 = 17 \) Thus, \[ A^2 = \begin{pmatrix} -7 & -12 \\ 24 & 17 \end{pmatrix} \] ### Step 2: Calculate \( -3A \) Next, we calculate \( -3A \): \[ -3A = -3 \cdot \begin{pmatrix} 1 & -2 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} -3 & 6 \\ -12 & -15 \end{pmatrix} \] ### Step 3: Calculate \( f(A) \) Now we can compute \( f(A) \): \[ f(A) = A^2 - 3A + 7I \] Where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Calculating \( 7I \): \[ 7I = 7 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] Now, we sum \( A^2 \), \( -3A \), and \( 7I \): \[ f(A) = \begin{pmatrix} -7 & -12 \\ 24 & 17 \end{pmatrix} + \begin{pmatrix} -3 & 6 \\ -12 & -15 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] Calculating the elements: - First row, first column: \( -7 - 3 + 7 = -3 \) - First row, second column: \( -12 + 6 + 0 = -6 \) - Second row, first column: \( 24 - 12 + 0 = 12 \) - Second row, second column: \( 17 - 15 + 7 = 9 \) Thus, \[ f(A) = \begin{pmatrix} -3 & -6 \\ 12 & 9 \end{pmatrix} \] ### Step 4: Add \( f(A) \) and \( \begin{pmatrix} 3 & 6 \\ -12 & -9 \end{pmatrix} \) Now we add \( f(A) \) and the given matrix: \[ f(A) + \begin{pmatrix} 3 & 6 \\ -12 & -9 \end{pmatrix} = \begin{pmatrix} -3 & -6 \\ 12 & 9 \end{pmatrix} + \begin{pmatrix} 3 & 6 \\ -12 & -9 \end{pmatrix} \] Calculating the elements: - First row, first column: \( -3 + 3 = 0 \) - First row, second column: \( -6 + 6 = 0 \) - Second row, first column: \( 12 - 12 = 0 \) - Second row, second column: \( 9 - 9 = 0 \) Thus, \[ f(A) + \begin{pmatrix} 3 & 6 \\ -12 & -9 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Final Answer The final result is: \[ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,-24,5]] and f(t)=t^(2)-3t+7 then f(A)+[[3,6-12,-9]]=

if A=[[1,-24,5]] and f(t)=t^(2)-3t+7 then f(A)+[[3,6-12,-9]]=

If t+1/t =5, then (2t)/(3t^(2)-5t+3) is equal to ……..

If A={:[(-1,2),(3,4)]:}andB=A^(T)," then "A^(T)+B^(T)=

Let f(t)=(t^(2)-1)/(t+3) find f'(1) :

If f (x) =(x+3)/(4x-5) and t =(3+ 5x)/( 4x -1), then f (t) is

If f(t)=4t^(2)-3t+6 , find (i) f (0) , (ii) f (4) , (iii) f(-5) .

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :