Home
Class 12
MATHS
The inverse of the matrix [ (5,-2),(3,1)...

The inverse of the matrix `[ (5,-2),(3,1)]` is

A

`(1)/(11) [(1,2),(-3,5)]`

B

`[(1,2),(-3,5)]`

C

`(1)/(13)[(-2,5),(1,3)]`

D

`[(1,3),(-2,5)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \(\begin{pmatrix} 5 & -2 \\ 3 & 1 \end{pmatrix}\), we will follow these steps: ### Step 1: Identify the elements of the matrix Let the matrix \(A\) be: \[ A = \begin{pmatrix} 5 & -2 \\ 3 & 1 \end{pmatrix} \] Here, we have: - \(a = 5\) - \(b = -2\) - \(c = 3\) - \(d = 1\) ### Step 2: Calculate the determinant of the matrix The determinant of a \(2 \times 2\) matrix is given by the formula: \[ \text{det}(A) = ad - bc \] Substituting the values: \[ \text{det}(A) = (5)(1) - (-2)(3) = 5 + 6 = 11 \] ### Step 3: Use the formula for the inverse of a \(2 \times 2\) matrix The inverse of a \(2 \times 2\) matrix is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Substituting the values of \(a\), \(b\), \(c\), and \(d\): \[ A^{-1} = \frac{1}{11} \begin{pmatrix} 1 & 2 \\ -3 & 5 \end{pmatrix} \] ### Step 4: Write the final answer Thus, the inverse of the matrix \(\begin{pmatrix} 5 & -2 \\ 3 & 1 \end{pmatrix}\) is: \[ A^{-1} = \begin{pmatrix} \frac{1}{11} & \frac{2}{11} \\ -\frac{3}{11} & \frac{5}{11} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [(3,-2),(1,4)] is

The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

Find the inverse of the matrix [(3 ,-2 ),(-7 , 5)] .

Obtain the inverse of the matrix A=[{:(2,3),(1,1):}] using elementary operations.

Find the inverse of the matrix [{:(-3,2),(5,-3):}] Hence, find the matrix P satisfying the matrix equation : P[{:(-3,2),(5,-3):}]=[{:(1,2),(2,-1):}]

The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

Select and write the most appropriate answer from the given alternatives in each of the following : The inverse of the matrix {:((-1,5),(-3,2)):} is

2.The inverse of the matrix [[2,3],[-4,-5]] is

The inverse of the matrix ([2,1],[1,3]) is

Using elementary transformations,find the inverse of the matrix [[6,-3-2,1]]