Home
Class 12
MATHS
If |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c...

If `|(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|=k(a+b+c)^(3)`, then k is equal to

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant problem given by the expression \( |(a-b-c, 2a, 2a), (2b, b-c-a, 2b), (2c, 2c, c-a-b)| = k(a+b+c)^3 \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} \] ### Step 2: Simplify the First Row We can simplify the first row by adding the second and third rows to it: \[ R_1 \rightarrow R_1 + R_2 + R_3 \] Calculating the new first row: - First element: \( (a - b - c) + 2b + 2c = a + b + c \) - Second element: \( 2a + (b - c - a) + 2c = a + b + c \) - Third element: \( 2a + 2b + (c - a - b) = a + b + c \) Thus, the determinant becomes: \[ D = \begin{vmatrix} a + b + c & a + b + c & a + b + c \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} \] ### Step 3: Factor Out \( (a + b + c) \) We can factor out \( (a + b + c) \) from the first row: \[ D = (a + b + c) \begin{vmatrix} 1 & 1 & 1 \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} \] ### Step 4: Simplify the Remaining Determinant Now, we will perform column operations to simplify the remaining determinant: - Let \( C_1 \rightarrow C_1 - C_2 \) and \( C_2 \rightarrow C_2 - C_3 \): This gives us: \[ D = (a + b + c) \begin{vmatrix} 0 & 0 & 0 \\ 2b - (b - c - a) & 0 & 0 \\ 2c - (c - a - b) & 0 & 0 \end{vmatrix} \] ### Step 5: Evaluate the Determinant The determinant now has a column of zeros, which means: \[ D = 0 \] This indicates that the determinant is zero unless \( a + b + c = 0 \). ### Step 6: Compare with Given Expression Since we have \( D = k(a + b + c)^3 \), and we found \( D = 0 \), we can conclude that \( k \) must be equal to \( 0 \) when \( a + b + c \neq 0 \). ### Conclusion Thus, the value of \( k \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c^2) then thhe value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

If A= [{:(a-b-c, 2a,2a), (2b, b-c-a, 2b),(2c, 2c, c-a-b):}] = (a +b+c) (x +a +b+c)^(2), x ne 0 " and " a +b +c ne 0 , then x is equal to

Solve the determinant using properties |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]| = (a+b+c)^3

det[[ prove that ,2aa-b-c,2a,2a2b,b-c-a,2b2c,2c,c-a-b]]=(a+b+c)^(3)