Home
Class 12
MATHS
Suppose |(x+1,3,5),(2,x+2,5),(2,3,x+4)|=...

Suppose `|(x+1,3,5),(2,x+2,5),(2,3,x+4)|=0`, then the value of x is equal to

A

`1,9`

B

`-1, 9`

C

`-1,-9`

D

`1,-9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \(|(x+1, 3, 5), (2, x+2, 5), (2, 3, x+4)| = 0\), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} x+1 & 3 & 5 \\ 2 & x+2 & 5 \\ 2 & 3 & x+4 \end{vmatrix} \] ### Step 2: Apply Column Operations We will simplify the determinant by adding all three columns to the first column: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \begin{vmatrix} (x+1) + 3 + 5 & 3 & 5 \\ 2 + (x+2) + 5 & x+2 & 5 \\ 2 + 3 + (x+4) & 3 & x+4 \end{vmatrix} \] Calculating the first column: - First row: \(x + 9\) - Second row: \(x + 9\) - Third row: \(x + 9\) Thus, we have: \[ D = \begin{vmatrix} x+9 & 3 & 5 \\ x+9 & x+2 & 5 \\ x+9 & 3 & x+4 \end{vmatrix} \] ### Step 3: Factor Out Common Terms We can factor out \(x + 9\) from the first column: \[ D = (x + 9) \begin{vmatrix} 1 & 3 & 5 \\ 1 & x+2 & 5 \\ 1 & 3 & x+4 \end{vmatrix} \] ### Step 4: Simplify the 2x2 Determinant Now we need to compute: \[ \begin{vmatrix} 1 & 3 & 5 \\ 1 & x+2 & 5 \\ 1 & 3 & x+4 \end{vmatrix} \] We can perform row operations to simplify this determinant. Subtract the first row from the second and third rows: \[ D = (x + 9) \begin{vmatrix} 1 & 3 & 5 \\ 0 & (x+2 - 3) & 0 \\ 0 & (3 - 3) & (x+4 - 5) \end{vmatrix} \] This simplifies to: \[ D = (x + 9) \begin{vmatrix} 1 & 3 & 5 \\ 0 & x - 1 & 0 \\ 0 & 0 & x - 1 \end{vmatrix} \] ### Step 5: Calculate the Determinant The determinant simplifies to: \[ D = (x + 9)(x - 1)(x - 1) \] Setting the determinant equal to zero: \[ (x + 9)(x - 1)^2 = 0 \] ### Step 6: Solve for x Setting each factor to zero gives us: 1. \(x + 9 = 0 \Rightarrow x = -9\) 2. \((x - 1)^2 = 0 \Rightarrow x = 1\) ### Final Answer Thus, the values of \(x\) are: \[ x = -9 \quad \text{or} \quad x = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

If |[3,x,2],[1,4,x],[5,x,2]|=0 then the value of x^2 is

If |(1,-3,4),(-5,x+2,2),(4,1,x-6)|=0 then x equals

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If x=2^((1)/(3)) +2^(-(1)/(3)) , then the value of 2x^(3) -6x-5 is equal to

if |[3,x,2],[1,4,x],[5,x+8,2]|=0 then value of x is

If |{:(x, 2, 3),(2,3,x),(3 , x,2):}| = |{:(1, x, 4),(x,4,1),(4 , 1,x):}| = |{:(0, 5, x),(5,x,0),(x, 0,5):}| = 0, then the value x equals (x in R )

If x^(4)+x^(3)+x^(2)+x+1=0,(x!=0) then value of x^(5) is equal to

Given that (5x - 3)^3 + (2x + 5)^3 + 27(4- 3x)^3 = 9(3 - 5x)(2x + 5)(3x - 4) , then the value of (2x + 1) is: