Home
Class 12
MATHS
Prove that Delta=|[a+bx, c+dx, p+qx],[ax...

Prove that `Delta=|[a+bx, c+dx, p+qx],[ax+b, cx+d, px+q],[u ,v, w]|=(1-x^2)|[a, c, p],[ b, d, q],[ u, c, w]|`

A

`|(a,c,p),(b,d,q),(u,v,w)|`

B

`|(a,c,p),(d,b,q),(w,v,u)|`

C

`(1-x^(2))|(a,c,p),(b,d,q),(u,v,w)|`

D

`(x^(2)-1)|(a,c,p),(b,d,q),(u,v,w)|`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

Prove that /_\ |[a+bx, c+dx, p+qx],[-ax+b, cx+d, px+q],[u,v,w]|=(1-x^2) [[a,c,p],[b,d,q],[u,v,w]]

Delta=[[a+bx,c+dx,p+qxax+b,cx+d,px+qu,v,w]]=(1-x^(2))det[[a,c,pb,d,qu,c,w]]

Prove that [a b c][u v w]=|[a*u, b*u, c*u], [a*v, b*v, c*v], [a*w, b*w, c*w]|

(C) less than q?(12p-? 1.) The 288th term of the series a, b, b, c, c, c, d, d, d, d, e, e, e, e, e, f, f, f, f, fs (A) u (B) v (C) w

If vec u , vec v , vec w are noncoplanar vectors and p, q are real numbers, then the equality [3 vec u ,""p vec v , p vec w]-[p vec v ,"" vec w , q vec u]-[2 vec w ,""q vec v , q vec u]=0 holds for (A) exactly one value of (p, q) (B) exactly two values of (p, q) (C) more than two but not all values of (p, q) (D) all values of (p, q)

Let A={a ,\ b ,\ c} , B={u\ v ,\ w} and let f and g be two functions from A to B and from B to A respectively defined as: f={(a ,\ v), (b ,\ u),\ (c ,\ w)} , g={(u ,\ b),\ (v ,\ a),\ (w ,\ c)}dot Show that f and g both are bijections and find fog and gofdot

If hat u , hat v , hat w be three non-coplanar unit vectors with angles between hat u& hat v is alpha between hat v& hat w is beta and between hat w& hat u is gamma . If vec a , vec b , vec c are the unit vectors along angle bisectors of alpha,beta,gamma respectively, then prove that [ vec ax vec b vec bx vec c vec cx vec a]=1/(16)[ hat u hat v hat w]^2sec^2(alpha/2)sec^2(beta/2)sec^2(gamma/2)

Consider the following relations from A to B where A={u, v, w, x, y, z} and B={p, q, r, s}. 1. {(u,p),(v,p),(w,p),(x,q),(y,q),(z,q)} 2. {(u,p),(v,q),(w,r),(z,s)} 3. {(u,s),(v,r),(w,q),(u,p),(v,p),(z,q)} 4. {(u,q),(v,p),(w,s),(x,r),(y,q),(z,s)} Which of the above relations are not functions ?