Home
Class 12
MATHS
|(n,n+1,n+2),(""^(n)P(n),""^((n+1))P((n+...

`|(n,n+1,n+2),(""^(n)P_(n),""^((n+1))P_((n+1)),""^((n+2))P_((n+2))),(""^(n)C_(n),""^((n+1))C_((n+1)),""^((n+2))C_((n+2)))|` is equal to

A

`n(n!)`

B

`(n+1)(n+1)!`

C

`(n+2)(n+2)!`

D

`(n^(2)+n+1)n!`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} n & n+1 & n+2 \\ nP_n & (n+1)P_{n+1} & (n+2)P_{n+2} \\ nC_n & (n+1)C_{n+1} & (n+2)C_{n+2} \end{vmatrix} \] we will follow these steps: ### Step 1: Evaluate the terms in the determinant 1. **Calculate \(nP_n\)**: \[ nP_n = n! \quad \text{(since } nP_n = \frac{n!}{(n-n)!} = n!\text{)} \] 2. **Calculate \((n+1)P_{n+1}\)**: \[ (n+1)P_{n+1} = (n+1)! \quad \text{(since } (n+1)P_{n+1} = \frac{(n+1)!}{(n+1-n-1)!} = (n+1)!\text{)} \] 3. **Calculate \((n+2)P_{n+2}\)**: \[ (n+2)P_{n+2} = (n+2)! \quad \text{(since } (n+2)P_{n+2} = \frac{(n+2)!}{(n+2-n-2)!} = (n+2)!\text{)} \] 4. **Calculate \(nC_n\)**: \[ nC_n = 1 \quad \text{(since } nC_n = \frac{n!}{n!0!} = 1\text{)} \] 5. **Calculate \((n+1)C_{n+1}\)**: \[ (n+1)C_{n+1} = 1 \quad \text{(since } (n+1)C_{n+1} = \frac{(n+1)!}{(n+1)!0!} = 1\text{)} \] 6. **Calculate \((n+2)C_{n+2}\)**: \[ (n+2)C_{n+2} = 1 \quad \text{(since } (n+2)C_{n+2} = \frac{(n+2)!}{(n+2)!0!} = 1\text{)} \] ### Step 2: Substitute values into the determinant Now substituting these values into the determinant, we have: \[ D = \begin{vmatrix} n & n+1 & n+2 \\ n! & (n+1)! & (n+2)! \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 3: Simplify the determinant We can simplify the determinant by performing column operations. Let's perform the following operations: - \(C_2 \leftarrow C_2 - C_1\) - \(C_3 \leftarrow C_3 - C_1\) This gives us: \[ D = \begin{vmatrix} n & n+1 & n+2 \\ n! & (n+1)! - n! & (n+2)! - n! \\ 1 & 0 & 0 \end{vmatrix} \] Now, simplifying the second row: - \((n+1)! - n! = n! \cdot (n+1 - 1) = n!\) - \((n+2)! - n! = n! \cdot (n+2)(n+1) - n! = n!(n^2 + 3n + 2 - 1) = n!(n^2 + 3n + 1)\) So we have: \[ D = \begin{vmatrix} n & n+1 & n+2 \\ n! & n! & n!(n^2 + 3n + 1) \\ 1 & 0 & 0 \end{vmatrix} \] ### Step 4: Factor out \(n!\) Factoring out \(n!\) from the second row, we get: \[ D = n! \cdot \begin{vmatrix} n & n+1 & n+2 \\ 1 & 1 & n^2 + 3n + 1 \\ 1 & 0 & 0 \end{vmatrix} \] ### Step 5: Expand the determinant Now we can expand this determinant using the first row: \[ D = n! \left( n \cdot \begin{vmatrix} 1 & n^2 + 3n + 1 \\ 1 & 0 \end{vmatrix} - (n+1) \cdot \begin{vmatrix} 1 & n^2 + 3n + 1 \\ 1 & 0 \end{vmatrix} + (n+2) \cdot \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \right) \] Calculating these 2x2 determinants gives us: - \(\begin{vmatrix} 1 & n^2 + 3n + 1 \\ 1 & 0 \end{vmatrix} = 0 - (n^2 + 3n + 1) = -(n^2 + 3n + 1)\) - \(\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = 0 - 1 = -1\) ### Step 6: Final calculation Substituting these back into the determinant expression: \[ D = n! \left( n \cdot (n^2 + 3n + 1) - (n+1) \cdot (n^2 + 3n + 1) - (n+2) \right) \] This simplifies to: \[ D = n! \cdot (n^2 + 3n + 1 - (n^2 + 3n + 1) - (n+2)) = n! \cdot (-n - 2) \] Thus, the final answer is: \[ D = n! \cdot (-2) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

Let f (n) = |{:(n,,n+1,,n+1),(.^(n)P_(n),,.^(n+1)P_(n+1),,.^(n+2)P_(n+2)),(.^(n)C_(n),,.^(n+1)C_(n+1),,.^(n+2)C_(n+2)):}| where the sysmbols have their usual neanings .then f(n) is divisible by

(n+2)C_(0)(2^(n+1))-(n+1)C_(1)(2^(n))+(n)C_(2)(2^(n-1))- is equal to

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

What is ""^(n)C_(1)+ ""^(n)C_(2)+……… + ""^(n)C_(n) ?

Find n, ""^(n+5)P_(n+1)=(11)/(2)(n-1)*""^(n+3)P_(n).

Prove that (""^(2n)C_(0))^(2)-(""^(2n)C_(1))^(2)+(""^(2n)C_(2))^(2)-…+(""^(2n)C_(2n))^(2)=(-1)^(n)*""^(2n)C_(n) .

Prove that : ""^(n)C_(0).""^(2n)C_(n)-""^(n)C_(1).""^(2n-2)Cn_(n)+""^(n)C_(2).""^(2n-4)Cn_(n)+......=2^n