Home
Class 12
MATHS
When the determinant |{:(cos2x,sin^(2)x,...

When the determinant `|{:(cos2x,sin^(2)x,cos4x),(sin^(2)x,cos2x,cos^(2)x),(cos4x,cos^(2)x,cos2x):}|` is expanded in powers of sin x , the constant term in than or equal to expression is

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

If the determinant |(cos2x,sin^2 x,cos 4x),(sin^2 x,cos 2x,cos^2 x),(cos 4x,cos^2 x,cos 2x)| is expanded in powers of sin x, then the constant term is

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

Knowledge Check

  • int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

    A
    `tan x + cot x + C`
    B
    `tan x + cosec x + C`
    C
    `-tan x + cot x + C`
    D
    `tan x + sec x + C`
  • If f(x)=|{:(5+sin^2x,cos^2x,4sin2x),(sin^2x,5+cos^2x,4sin2x),(sin^2x,cos^2x,5+4sin2x):}| then evaluate

    A
    domain of function f(x)
    B
    range of function f(x)
    C
    period of function f(x)
    D
    `underset(xto0)lim(f(x)-150)/x`
  • Similar Questions

    Explore conceptually related problems

    " If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

    If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

    The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

    Find the maximum value of abs((sin^2x,1+cos^2x,cos2x),(1+sin^2x,cos^2x,cos2x),(sin^2x,cos^2x,sin2x))

    int(sin2x-cos2x)/(sin2x*cos2x)dx=?

    If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then