Home
Class 12
MATHS
If omega is an imaginary cube root of un...

If `omega` is an imaginary cube root of unity, then the value of `|(a,bomega^(2),aomega),(bomega,c,bomega^(2)),(comega^(2),aomega,c)|` is

A

`a^(3)+b^(3)+c^(2)-3abc`

B

`a^(2)b-b^(2)c`

C

0

D

`a^(2)+b^(2)+c^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} a & b\omega^2 & a\omega \\ b\omega & c & b\omega^2 \\ c\omega^2 & a\omega & c \end{vmatrix} \) where \( \omega \) is an imaginary cube root of unity, we can follow these steps: ### Step 1: Understand the properties of \( \omega \) The cube roots of unity satisfy the equations: 1. \( \omega^3 = 1 \) 2. \( 1 + \omega + \omega^2 = 0 \) ### Step 2: Write the determinant We can express the determinant as: \[ D = \begin{vmatrix} a & b\omega^2 & a\omega \\ b\omega & c & b\omega^2 \\ c\omega^2 & a\omega & c \end{vmatrix} \] ### Step 3: Apply the determinant properties We can expand the determinant using the first row: \[ D = a \begin{vmatrix} c & b\omega^2 \\ a\omega & c \end{vmatrix} - b\omega^2 \begin{vmatrix} b\omega & b\omega^2 \\ c\omega^2 & c \end{vmatrix} + a\omega \begin{vmatrix} b\omega & c \\ c\omega^2 & a\omega \end{vmatrix} \] ### Step 4: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} c & b\omega^2 \\ a\omega & c \end{vmatrix} = c \cdot c - b\omega^2 \cdot a\omega = c^2 - ab\omega^3 = c^2 - ab \] 2. For the second determinant: \[ \begin{vmatrix} b\omega & b\omega^2 \\ c\omega^2 & c \end{vmatrix} = b\omega \cdot c - b\omega^2 \cdot c\omega^2 = bc\omega - bc\omega^4 = bc\omega - bc = bc(\omega - 1) \] 3. For the third determinant: \[ \begin{vmatrix} b\omega & c \\ c\omega^2 & a\omega \end{vmatrix} = b\omega \cdot a\omega - c \cdot c\omega^2 = ab\omega^2 - c^2\omega^2 = \omega^2(ab - c^2) \] ### Step 5: Substitute back into the determinant Now substitute these back into the expression for \( D \): \[ D = a(c^2 - ab) - b\omega^2 \cdot bc(\omega - 1) + a\omega \cdot \omega^2(ab - c^2) \] ### Step 6: Simplify the expression 1. The first term is \( ac^2 - a^2b \). 2. The second term becomes \( -b^2c\omega^2(\omega - 1) = -b^2c\omega^3 + b^2c\omega^2 = -b^2c + b^2c\omega^2 \). 3. The third term simplifies to \( a\omega^3(ab - c^2) = a(ab - c^2) \). ### Step 7: Combine all terms Now combine all the terms: \[ D = ac^2 - a^2b - b^2c + b^2c\omega^2 + a(ab - c^2) \] Since \( \omega^3 = 1 \), we can simplify further: \[ D = ac^2 - a^2b - b^2c + b^2c - ac^2 = 0 \] ### Final Result Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

If omega is an imaginary cube root of unity, then the value of |(a,b omega^(2),a omega),(b omega,c,b omega^(2)),(c omega^(2),a omega,c)| , is

If omega is an imaginary cube root of unity, then the value of |(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2))| is

If omegais an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omega is an imaginary cube root of unity, then (1+omega-omega^(2))^(7) equals

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If omega is an imaginary cube root of unity, then a root of equation |(x+1,omega,omega^2),(omega,x+omega^2,1),(omega^2,1,x+2)|=0,can be