Home
Class 12
MATHS
If alpha,beta & gamma are the roots the ...

If `alpha,beta & gamma` are the roots the equations `x^(3)+px+q=0` then the value of the determinant `[{:(,alpha,beta,gamma),(,beta,gamma,alpha),(,gamma,alpha,beta):}]`

A

0

B

`-2`

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta& gamma are the roots of the equation x^(3)+px+q=0, then the value of the det[[alpha,beta,gammabeta,gamma,alphagamma,alpha,beta]] is

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha, beta and gamma are the roots of the equation x^(3) + px + q = 0 (with p != 0 and p != 0 and q != 0 ), the value of the determinant |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then find he value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta))

If alpha,beta,gamma are the roots of the equation x^(3)+3x-2=0 then the equation whose roots are alpha(beta+gamma),beta(gamma+alpha),gamma(alpha+beta) is

If alpha,beta,gamma are the roots of the equation x^(3)-x+2=0 then the equation whose roots are alpha beta+(1)/(gamma),beta gamma+(1)/(alpha),gamma alpha+(1)/(beta) is