Home
Class 12
MATHS
The parameter, on which the value of the...

The parameter, on which the value of the determinant `|(1,a,a^(2)),(cos(p-d)x,cospx,cos(p+d)x),(sin(p-d)x,sinpx,sin(p+d)x)|` does not depend, is

A

a

B

p

C

d

D

x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of determining the parameter on which the value of the determinant \[ D = \begin{vmatrix} 1 & a & a^2 \\ \cos(p-d)x & \cos(px) & \cos(p+d)x \\ \sin(p-d)x & \sin(px) & \sin(p+d)x \end{vmatrix} \] does not depend, we will follow these steps: ### Step 1: Expand the Determinant We will use the properties of determinants to expand \(D\). We can expand the determinant along the first row. \[ D = 1 \cdot \begin{vmatrix} \cos(p-d)x & \cos(p+d)x \\ \sin(p-d)x & \sin(p+d)x \end{vmatrix} - a \cdot \begin{vmatrix} \cos(p-d)x & \cos(px) \\ \sin(p-d)x & \sin(px) \end{vmatrix} + a^2 \cdot \begin{vmatrix} \cos(px) & \cos(p+d)x \\ \sin(px) & \sin(p+d)x \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants Now we will compute the 2x2 determinants. 1. For the first determinant: \[ \begin{vmatrix} \cos(p-d)x & \cos(p+d)x \\ \sin(p-d)x & \sin(p+d)x \end{vmatrix} = \cos(p-d)x \sin(p+d)x - \sin(p-d)x \cos(p+d)x \] Using the sine subtraction formula, this can be simplified to: \[ \sin((p+d)x - (p-d)x) = \sin(2dx) \] 2. For the second determinant: \[ \begin{vmatrix} \cos(p-d)x & \cos(px) \\ \sin(p-d)x & \sin(px) \end{vmatrix} = \cos(p-d)x \sin(px) - \sin(p-d)x \cos(px) \] This can be simplified to: \[ \sin(px - (p-d)x) = \sin(dx) \] 3. For the third determinant: \[ \begin{vmatrix} \cos(px) & \cos(p+d)x \\ \sin(px) & \sin(p+d)x \end{vmatrix} = \cos(px) \sin(p+d)x - \sin(px) \cos(p+d)x \] This can be simplified to: \[ \sin((p+d)x - px) = \sin(dx) \] ### Step 3: Substitute Back into the Determinant Now substituting these back into \(D\): \[ D = 1 \cdot \sin(2dx) - a \cdot \sin(dx) + a^2 \cdot \sin(dx) \] This simplifies to: \[ D = \sin(2dx) + (a^2 - a) \sin(dx) \] ### Step 4: Analyze the Dependence on Parameters From the expression for \(D\), we can see that it depends on \(d\) and \(x\), but it does not depend on \(p\). ### Conclusion The parameter on which the value of the determinant does not depend is: \[ \text{The parameter is } p. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

The parameter on which the value of the determinant det[[a,a^(2)cos(p-d)x,cos px,cos(p+d)xsin(p-d)x,sin px,sin(p+d)x]] does not depend is a b.p c.d.x

The range of the values of p for which the equation sin cos^(-1)(cos(tan^(-1)x))=p has a solution is

D((1-cos2x)/(sin2x))=

If p_(0) is the solution of the equation [sin cos^(-1)(cos(tan^(-1)x))]=cos^(-1)p, then

d/(dx) (sin x+ cos x)

Let P(x)=sqrt((cos x+cos2x+cos3x)^(2)+(sin x+sin2x+sin3x)^(2)) then P(x) is equal to

The range of values of p for which the equation sin(cos^(-1)(cos^(-1)(cos(tan^(-1)x)))=p has solution is

Find the values of p for which the equation 1+p sin x=p^(2)-sin^(2)x has a solution

why (d)/(dx)sin x=cos x?