Home
Class 12
MATHS
If the equations are x+y-3=0 (1+beta)x...

If the equations are `x+y-3=0`
`(1+beta)x+(2+beta)y-8=0 and x-(1+beta)y+(2+beta)=0`, then the value of `beta` for the consistent solution, is

A

2

B

`(16)/(3)`

C

`(-5)/(3)`

D

`(5)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \beta \) for which the given equations have a consistent solution, we need to set up the determinant of the coefficients of the equations and set it equal to zero. The equations given are: 1. \( x + y - 3 = 0 \) 2. \( (1 + \beta)x + (2 + \beta)y - 8 = 0 \) 3. \( x - (1 + \beta)y + (2 + \beta) = 0 \) ### Step 1: Write the equations in standard form The equations can be rewritten as: 1. \( 1x + 1y - 3 = 0 \) 2. \( (1 + \beta)x + (2 + \beta)y - 8 = 0 \) 3. \( 1x - (1 + \beta)y + (2 + \beta) = 0 \) ### Step 2: Form the coefficient matrix The coefficients of \( x \), \( y \), and the constants can be arranged in the following matrix: \[ \begin{vmatrix} 1 & 1 & -3 \\ 1 + \beta & 2 + \beta & -8 \\ 1 & -(1 + \beta) & 2 + \beta \end{vmatrix} \] ### Step 3: Calculate the determinant To find the determinant, we can use the formula for a 3x3 determinant: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where: - \( a = 1 \), \( b = 1 \), \( c = -3 \) - \( d = 1 + \beta \), \( e = 2 + \beta \), \( f = -8 \) - \( g = 1 \), \( h = -(1 + \beta) \), \( i = 2 + \beta \) Calculating the determinant step by step: 1. **Calculate \( ei - fh \)**: \[ ei = (2 + \beta)(2 + \beta) = (2 + \beta)^2 = 4 + 4\beta + \beta^2 \] \[ fh = (-8)(-(1 + \beta)) = 8(1 + \beta) = 8 + 8\beta \] \[ ei - fh = (4 + 4\beta + \beta^2) - (8 + 8\beta) = \beta^2 - 4\beta - 4 \] 2. **Calculate \( di - fg \)**: \[ di = (1 + \beta)(2 + \beta) = 2 + 3\beta + \beta^2 \] \[ fg = (-8)(1) = -8 \] \[ di - fg = (2 + 3\beta + \beta^2) + 8 = \beta^2 + 3\beta + 10 \] 3. **Calculate \( dh - eg \)**: \[ dh = (1 + \beta)(-(1 + \beta)) = -(1 + \beta)^2 = -1 - 2\beta - \beta^2 \] \[ eg = (2 + \beta)(1) = 2 + \beta \] \[ dh - eg = (-1 - 2\beta - \beta^2) - (2 + \beta) = -3 - 3\beta - \beta^2 \] 4. **Putting it all together**: \[ D = 1(\beta^2 - 4\beta - 4) - 1(\beta^2 + 3\beta + 10) - 3(-3 - 3\beta - \beta^2) \] \[ = (\beta^2 - 4\beta - 4) - (\beta^2 + 3\beta + 10) + 9 + 9\beta + 3\beta^2 \] \[ = \beta^2 - 4\beta - 4 - \beta^2 - 3\beta - 10 + 9 + 9\beta + 3\beta^2 \] \[ = (3\beta^2) + (9\beta - 4\beta - 3\beta) + (-4 - 10 + 9) = 3\beta^2 + 2\beta - 5 \] ### Step 4: Set the determinant to zero For the system to have a consistent solution, we set the determinant to zero: \[ 3\beta^2 + 2\beta - 5 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 3 \), \( b = 2 \), and \( c = -5 \). \[ \beta = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 3 \cdot (-5)}}{2 \cdot 3} \] \[ = \frac{-2 \pm \sqrt{4 + 60}}{6} \] \[ = \frac{-2 \pm \sqrt{64}}{6} \] \[ = \frac{-2 \pm 8}{6} \] Calculating the two possible values: 1. \( \beta = \frac{6}{6} = 1 \) 2. \( \beta = \frac{-10}{6} = -\frac{5}{3} \) ### Final Answer The values of \( \beta \) for which the system has a consistent solution are \( \beta = 1 \) and \( \beta = -\frac{5}{3} \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

Consider the system of equations : x + y + z = 0 alpha x + beta y + gamma z = 0 alpha^(2) x + beta^(2) y + gamma^(2) z = 0 then the system of equations has

Consider the equation x^2-5x+2=0 with roots alpha, beta , then the value of alpha+beta+alpha^(-1)+beta^(-1)=?

If alpha and beta are the roots of the equation x^(2)+sqrt(alpha)x+beta=0 then the values of alpha and beta are.-

If alpha and beta are the roots of the equation x^(2)+sqrt(alpha)x+beta=0 then the values of alpha and beta are

The equation of AB,BC, AC three sides of a triangle are -x + y -1 =0, x + y -1 =0 and x =-4if (alpha , 0) and (0, beta) lie inside the triangle where alpha, beta in Z, then

If the line (x-2)/3 =(y-1)/-5 =(z+2)/2 lies in the plane x+3y - alphaz + beta=0 , then: (alpha, beta)-=

The graphs of the equations 3x + y - 5 = 0 and 2x - y = 0 intersect at the point P (alpha,beta) . What is the value of (3alpha + beta) ?

The graphs of the equations 3x + y- 5 = 0 and 2x - y - 5 = 0 intersect at the point P(alpha,beta) . What is the value of (3 alpha+ beta) ?