Home
Class 12
MATHS
If |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|...

If `|(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=k(a-b)(b-c)(c-a)`, then k is equal to

A

`-2`

B

1

C

2

D

abc

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant problem given by the equation \[ |(1,a,a^2),(1,b,b^2),(1,c,c^2)| = k(a-b)(b-c)(c-a), \] we need to find the value of \( k \). ### Step-by-Step Solution: 1. **Set Up the Determinant**: We start with the determinant: \[ D = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \] 2. **Apply Row Operations**: We can simplify the determinant by performing row operations. Let's subtract the second row from the first row and the third row from the second row: \[ R_1 \rightarrow R_1 - R_2 \quad \text{and} \quad R_2 \rightarrow R_2 - R_3 \] This gives us: \[ D = \begin{vmatrix} 0 & a-b & a^2 - b^2 \\ 0 & b-c & b^2 - c^2 \\ 1 & c & c^2 \end{vmatrix} \] 3. **Factor the Differences**: We can factor the differences in the second column: \[ a^2 - b^2 = (a-b)(a+b) \quad \text{and} \quad b^2 - c^2 = (b-c)(b+c). \] Thus, we rewrite the determinant: \[ D = \begin{vmatrix} 0 & a-b & (a-b)(a+b) \\ 0 & b-c & (b-c)(b+c) \\ 1 & c & c^2 \end{vmatrix} \] 4. **Factor Out Common Terms**: We can factor out \( (a-b) \) from the first row and \( (b-c) \) from the second row: \[ D = (a-b)(b-c) \begin{vmatrix} 0 & 1 & a+b \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix} \] 5. **Evaluate the Remaining Determinant**: Now we can evaluate the remaining determinant: \[ D' = \begin{vmatrix} 0 & 1 & a+b \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix} \] By expanding this determinant, we can eliminate the first column: \[ D' = 0 - 0 + 1 \cdot \begin{vmatrix} 1 & a+b \\ c & c^2 \end{vmatrix} = c^2 - (a+b)c. \] 6. **Combine Everything**: Thus, we have: \[ D = (a-b)(b-c)(c^2 - (a+b)c). \] 7. **Compare with Given Expression**: We know that: \[ D = k(a-b)(b-c)(c-a). \] By comparing both sides, we can see that: \[ k = 1. \] ### Final Answer: Thus, the value of \( k \) is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

1,1,1a,b,ca^(2),b^(2),c^(2)]|=(a-b)(b-c)(c-a)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

([1,1,1a,b,ca^(2),b^(2),c^(2)])=(a-b)(b-c)(c-a)

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these