Home
Class 12
MATHS
|(a+b,a,b),(a,a+c,c),(b,c,b+c)| is equal...

`|(a+b,a,b),(a,a+c,c),(b,c,b+c)|` is equal to

A

4abc

B

abc

C

`a^(2)b^(2)c^(2)`

D

`4a^(2)bc`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( |(a+b,a,b),(a,a+c,c),(b,c,b+c)| \), we will follow the steps outlined below: ### Step 1: Write the Determinant We start by writing the determinant in a standard form: \[ D = \begin{vmatrix} a+b & a & b \\ a & a+c & c \\ b & c & b+c \end{vmatrix} \] ### Step 2: Expand the Determinant We will expand the determinant using the first row. The formula for the determinant of a 3x3 matrix is: \[ D = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] Substituting the values from our matrix: \[ D = (a+b) \begin{vmatrix} a+c & c \\ c & b+c \end{vmatrix} - a \begin{vmatrix} a & c \\ b & b+c \end{vmatrix} + b \begin{vmatrix} a & a+c \\ b & c \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants Now we will calculate each of the 2x2 determinants. 1. For the first determinant: \[ \begin{vmatrix} a+c & c \\ c & b+c \end{vmatrix} = (a+c)(b+c) - c^2 = ab + ac + bc + c^2 - c^2 = ab + ac + bc \] 2. For the second determinant: \[ \begin{vmatrix} a & c \\ b & b+c \end{vmatrix} = a(b+c) - bc = ab + ac - bc \] 3. For the third determinant: \[ \begin{vmatrix} a & a+c \\ b & c \end{vmatrix} = a(c) - b(a+c) = ac - ab - bc \] ### Step 4: Substitute Back into the Determinant Now we substitute these results back into the expression for \( D \): \[ D = (a+b)(ab + ac + bc) - a(ab + ac - bc) + b(ac - ab - bc) \] ### Step 5: Expand and Simplify Now we will expand and simplify: 1. Expanding the first term: \[ (a+b)(ab + ac + bc) = a(ab + ac + bc) + b(ab + ac + bc) = a^2b + a^2c + abc + ab^2 + abc + b^2c \] This simplifies to: \[ a^2b + a^2c + 2abc + ab^2 + b^2c \] 2. The second term: \[ - a(ab + ac - bc) = -a^2b - a^2c + abc \] 3. The third term: \[ b(ac - ab - bc) = abc - ab^2 - b^2c \] ### Step 6: Combine All Terms Now we combine all the terms: \[ D = (a^2b + a^2c + 2abc + ab^2 + b^2c) - (a^2b + a^2c - abc) + (abc - ab^2 - b^2c) \] Combining like terms, we find: - The \( a^2b \) and \( -a^2b \) cancel. - The \( a^2c \) and \( -a^2c \) cancel. - The \( 2abc + abc + abc = 4abc \). - The \( ab^2 - ab^2 = 0 \). - The \( b^2c - b^2c = 0 \). Thus, we have: \[ D = 4abc \] ### Final Answer The value of the determinant is: \[ \boxed{4abc} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

|{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

If the vectors a, b and c are coplanar, then |{:(a, b, c),(a*a, a*b,a*c),(b*a,b*b,b*c):}| is equal to

|[a,a^(2),b+c],[b,b^(2),c+a],[c,c^(2),a+b]| is equal to