Home
Class 12
MATHS
The system x+4y-2z=3,3x+y+5z=7 and 2x+3y...

The system `x+4y-2z=3,3x+y+5z=7` and `2x+3y+z=5` has

A

infinite number of solutions

B

unique solution

C

trivial solution

D

no solution

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the solutions for the given system of equations, we will analyze the system using determinants. The equations are: 1. \( x + 4y - 2z = 3 \) 2. \( 3x + y + 5z = 7 \) 3. \( 2x + 3y + z = 5 \) ### Step 1: Form the Coefficient Matrix and Calculate the Determinant (Δ) The coefficient matrix \( A \) is formed from the coefficients of \( x, y, z \) in the equations: \[ A = \begin{bmatrix} 1 & 4 & -2 \\ 3 & 1 & 5 \\ 2 & 3 & 1 \end{bmatrix} \] Now we calculate the determinant \( \Delta \) of matrix \( A \): \[ \Delta = \begin{vmatrix} 1 & 4 & -2 \\ 3 & 1 & 5 \\ 2 & 3 & 1 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix: \[ \Delta = 1 \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} - 4 \begin{vmatrix} 3 & 5 \\ 2 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} = 1 \cdot 1 - 5 \cdot 3 = 1 - 15 = -14 \) 2. \( \begin{vmatrix} 3 & 5 \\ 2 & 1 \end{vmatrix} = 3 \cdot 1 - 5 \cdot 2 = 3 - 10 = -7 \) 3. \( \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} = 3 \cdot 3 - 1 \cdot 2 = 9 - 2 = 7 \) Now substituting back into the determinant calculation: \[ \Delta = 1(-14) - 4(-7) - 2(7) \] \[ = -14 + 28 - 14 = 0 \] ### Step 2: Analyze the Determinant Since \( \Delta = 0 \), the system of equations may either have no solution or infinitely many solutions. We need to check the consistency of the equations. ### Step 3: Calculate the Determinants for Consistency (Δ1, Δ2, Δ3) Next, we will calculate the determinants \( \Delta_1, \Delta_2, \Delta_3 \) to check for consistency. 1. **For \( \Delta_1 \)** (replace the first column with the constants): \[ \Delta_1 = \begin{vmatrix} 3 & 4 & -2 \\ 7 & 1 & 5 \\ 5 & 3 & 1 \end{vmatrix} \] Calculating \( \Delta_1 \): \[ = 3 \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} - 4 \begin{vmatrix} 7 & 5 \\ 5 & 1 \end{vmatrix} - 2 \begin{vmatrix} 7 & 1 \\ 5 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: - \( \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} = -14 \) - \( \begin{vmatrix} 7 & 5 \\ 5 & 1 \end{vmatrix} = 7 \cdot 1 - 5 \cdot 5 = 7 - 25 = -18 \) - \( \begin{vmatrix} 7 & 1 \\ 5 & 3 \end{vmatrix} = 7 \cdot 3 - 1 \cdot 5 = 21 - 5 = 16 \) Substituting back: \[ \Delta_1 = 3(-14) - 4(-18) - 2(16) \] \[ = -42 + 72 - 32 = -2 \quad (\Delta_1 \neq 0) \] ### Conclusion Since \( \Delta = 0 \) and \( \Delta_1 \neq 0 \), the system of equations has **no solution**. ### Final Answer The system of equations has **no solution**. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

Solve the system of equations by cramer's rule: x+2y-z=3 , 3x-4y+5z=7 and 7x-y+z=14

The system of equations x+2y-4z=3,2x-3y+2z=5 and x -12y +16z =1 has

The system of equation 2x+y-3z=5 3x-2y+2z=5 and 5x-3y-z=16

5x-y=-7 2x+3z=1 3y-z=5

The following system of equations 5x-7y+3z=3, 5x+y+3z=7 and 5x+3y+2z=5 is

The system of equation 2x + y - 3z = 5 3x-2y+2z=5 and 5x-3y-z=16