Home
Class 12
MATHS
If omega is cube root of unity, then | ...

If `omega ` is cube root of unity, then `| {:(1, omega, omega ^(2)),( omega, omega ^(2) , 1),( omega ^(2) , 1, omega):}|` is equal to

A

1

B

`omega`

C

`omega^(2)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If 1,omega,omega^2 are the cube roots of unity , then Delta=|(1,omega^n, omega^2n),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If omega is a cube root of unity, then for polynomila is |(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|