Home
Class 12
MATHS
If the function f:[1,oo)to[1,oo) is defi...

If the function `f:[1,oo)to[1,oo)` is defined by `f(x)=2^(x(x-1))` then `f^(-1)` is

A

`((1)/(2))^(x(x-1))`

B

`(1)/(2)(1+sqrt(1+4log_(2)x))`

C

`(1)/(2)(1-sqrt(1-4log_(2)x))`

D

Not defined

Text Solution

Verified by Experts

The correct Answer is:
B

Given `f(x)=2^(x(x-1)) implies x(x-1) = log_2 f(x)`
`implies x^2 - x - log_2f(x)=0implies x= (1+-sqrt(4log_2f(x)))/2`
Only `f^-1(x)(1)/(2)(1+sqrt(1+4log_(2)x))`lies in the domain
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    BITSAT GUIDE|Exercise BITSAT Archives|19 Videos
  • SEQUENCES AND SERIES

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|18 Videos
  • SOLVED PAPER 2017

    BITSAT GUIDE|Exercise PART (IV) Mathematics)|45 Videos

Similar Questions

Explore conceptually related problems

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1-sqrt(1+4log_2x)) (D) not defined

If the function f : [1,oo) to [1,oo) is defined by f (x) = 2^(x (x-1) , then f^(-1) (x) is

Knowledge Check

  • Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

    A
    `2-sqrt(4-logs x)`
    B
    `2+sqrt(4+logs x)`
    C
    `((1)/5)^(x^(x+4))`
    D
    not defined
  • The function f : [0,oo)to[0,oo) defined by f(x)=(2x)/(1+2x) is

    A
    one-one and onto
    B
    one-one but not onto
    C
    not one-one but onto
    D
    Neither one-one nor onto
  • If f:[1,oo)to[2,oo) is given by f(x)=x+(1)/(x) , then f^(-1)(x) equals

    A
    `(x+sqrt(x^(2)-4))/(2)`
    B
    `(x)/(1+x^(2))`
    C
    `(x-sqrt(x^(2)-4))/(2)`
    D
    `1+sqrt(x^(2)-4)`
  • Similar Questions

    Explore conceptually related problems

    If the function, f:[1,oo]to [1,oo] is defined by f(x)=3^(x(x-1)) , then f^(-1)(x) is

    If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

    If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

    If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)

    Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is