Home
Class 12
MATHS
If the line x cos alpha + y sin alpha = ...

If the line `x cos alpha + y sin alpha = p`, is tangent to the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))` = 1, then the value of `a^(2) cos^(2) alpha+b^(2) sin^(2) alpha` is

A

p

B

`p^(2)`

C

`(1)/(p^(2))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( a^2 \cos^2 \alpha + b^2 \sin^2 \alpha \) given that the line \( x \cos \alpha + y \sin \alpha = p \) is tangent to the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \). ### Step-by-Step Solution: 1. **Identify the given line equation**: The line is given by \( x \cos \alpha + y \sin \alpha = p \). We can rewrite this in slope-intercept form as: \[ y = -\frac{\cos \alpha}{\sin \alpha} x + \frac{p}{\sin \alpha} \] Here, the slope \( m \) is \( -\frac{\cos \alpha}{\sin \alpha} \) and the y-intercept \( c \) is \( \frac{p}{\sin \alpha} \). 2. **Use the condition for tangency**: For a line \( y = mx + c \) to be tangent to the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), the condition is: \[ c^2 = a^2 m^2 + b^2 \] Substituting for \( m \) and \( c \): \[ \left(\frac{p}{\sin \alpha}\right)^2 = a^2 \left(-\frac{\cos \alpha}{\sin \alpha}\right)^2 + b^2 \] 3. **Simplify the equation**: \[ \frac{p^2}{\sin^2 \alpha} = a^2 \frac{\cos^2 \alpha}{\sin^2 \alpha} + b^2 \] Multiply through by \( \sin^2 \alpha \): \[ p^2 = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha \] 4. **Rearranging the equation**: From the above equation, we can isolate the term we are interested in: \[ a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2 \] 5. **Conclusion**: Therefore, the value of \( a^2 \cos^2 \alpha + b^2 \sin^2 \alpha \) is: \[ \boxed{p^2} \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos

Similar Questions

Explore conceptually related problems

The line x cos alpha + y sin alpha +y sin alpha =p is tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. if

If the line x cos alpha+y sin alpha=p touches the ellipse x^(2)/a^(2)+(y^(2))/(b^(2))=1 then the point of contact will be

If the line x cos alpha+y sin alpha=p touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 ,then the point of contact will be ((-a^(2)cos alpha)/(p),(-b^(2)sin alpha)/(p)) ((b^(2)cos alpha)/(p),(a^(2)sin alpha)/(p)) ((b^(2)sin alpha)/(p),(a^(2)cos alpha)/(p)) ( (a^(2)cos alpha)/(p),(b^(2)sin alpha)/(p))

If x cos alpha +y sin alpha = 4 is tangent to (x^(2))/(25) +(y^(2))/(9) =1 , then the value of alpha is

Line xcos alpha +y sin alpha =p is a normal to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , if

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha-b^(2)sin^(2)alpha=p^(2)

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha+b^(2)sin^(2)alpha=p^(2)

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

BITSAT GUIDE-CONIC SECTIONS-BITSAT ARCHIVES
  1. If the line x cos alpha + y sin alpha = p, is tangent to the ellipse (...

    Text Solution

    |

  2. The locus of the points of intersectino of the tangents at the extremi...

    Text Solution

    |

  3. A variable chord PQ of the parabola y^2 = 4ax subtends a right angle ...

    Text Solution

    |

  4. The foci of the conic 25x^(2) +16y^(2)-150 x=175 are :

    Text Solution

    |

  5. The radius of the circle passing through the foci of the ellipse (x^(2...

    Text Solution

    |

  6. If OAB is an equilateral triangle inscribed in the parabola y^(2) = 4a...

    Text Solution

    |

  7. If the length of the major axis of the ellipse ((x^(2))/(a^(2)))+((y^(...

    Text Solution

    |

  8. Let S and T be the foci of the ellipse (x^(2))/(a^(2))+(y^(2))/(bh^(2)...

    Text Solution

    |

  9. The difference of the focal distances of any point on the hyperbola is...

    Text Solution

    |

  10. If the focus of a parabola is at (0, -3) and its directrix is y = 3, t...

    Text Solution

    |

  11. The length of tangent from (5,1) to the circle x^(2)+y^(2)+6x-4y-3=0 ...

    Text Solution

    |

  12. The length of the latus rectum of the parabola 169{(x-1)^2+(y-3)^2}=(5...

    Text Solution

    |

  13. If the centre, one of the foci and semi-major axis of an ellipse are (...

    Text Solution

    |

  14. The radius of the director circle of the hyperbola (x^(2))/(a^(2))-(y^...

    Text Solution

    |

  15. The equation of the chord of y^(2) = 8x which is bisected at (2, - 3),...

    Text Solution

    |

  16. Show that all chords of the curve 3x^2-y^2-2x+4y=0, which subtend a ri...

    Text Solution

    |

  17. The line y=bt meets the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 in real poin...

    Text Solution

    |

  18. The distance between the foci of the hyperbola x^(2)-3y^(2)-4x-6y-11=0...

    Text Solution

    |

  19. The length of the common chord of the ellipse ((x-1)^2)/(9) + ((y-2)^2...

    Text Solution

    |

  20. For hyperbola x^2/(cos^2alpha)-y^2/(sin^2alpha)=1which of the followin...

    Text Solution

    |

  21. The equation of the parabola with its vertex at (1, 1) and focus (3, 1...

    Text Solution

    |