Home
Class 12
MATHS
If f(x)=|cosx-sinx|, then f'(pi)/(2) is...

If `f(x)=|cosx-sinx|,` then `f'(pi)/(2)` is equal to

A

1

B

`-1`

C

0

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(\frac{\pi}{2}) \) for the function \( f(x) = |\cos x - \sin x| \), we will follow these steps: ### Step 1: Determine the expression for \( f(x) \) The function is given as: \[ f(x) = |\cos x - \sin x| \] To analyze this function, we need to determine when \( \cos x - \sin x \) is positive or negative. ### Step 2: Find the points where \( \cos x = \sin x \) Setting \( \cos x = \sin x \), we can solve for \( x \): \[ \tan x = 1 \implies x = \frac{\pi}{4} + n\pi, \quad n \in \mathbb{Z} \] The first two points in the interval \( [0, 2\pi] \) are \( x = \frac{\pi}{4} \) and \( x = \frac{5\pi}{4} \). ### Step 3: Analyze the intervals - For \( x \in \left(0, \frac{\pi}{4}\right) \): \( \cos x > \sin x \) so \( f(x) = \cos x - \sin x \) - For \( x \in \left(\frac{\pi}{4}, \frac{5\pi}{4}\right) \): \( \sin x > \cos x \) so \( f(x) = -(\cos x - \sin x) = \sin x - \cos x \) - For \( x \in \left(\frac{5\pi}{4}, 2\pi\right) \): \( \cos x > \sin x \) so \( f(x) = \cos x - \sin x \) ### Step 4: Find \( f(x) \) in the relevant interval Since \( \frac{\pi}{2} \) is in the interval \( \left(\frac{\pi}{4}, \frac{5\pi}{4}\right) \), we use: \[ f(x) = \sin x - \cos x \] ### Step 5: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(\sin x - \cos x) = \cos x + \sin x \] ### Step 6: Evaluate \( f'(\frac{\pi}{2}) \) Now we substitute \( x = \frac{\pi}{2} \): \[ f'(\frac{\pi}{2}) = \cos\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right) = 0 + 1 = 1 \] ### Final Answer Thus, \( f'(\frac{\pi}{2}) = 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x)=(1-cosx)/(1-sinx)," then: "f'((pi)/(2)) is

If f(x)=|cosx|, then f'((3 pi)/(4)) equal to

If f(x)=|x|^(|sinx|) , then f'((pi)/(4)) equals

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :