Home
Class 12
MATHS
if y=logx*e^((tanx+x^(2))), then (dy)/(d...

if `y=logx*e^((tanx+x^(2)))`, then `(dy)/(dx)` is equal to

A

`e^((tanx+x^2))(1)/(x)+(sec^(2)x+x)logx`

B

`e^((tanx+x^2))(1)/(x)+(sec^(2)x-x)logx`

C

`e^((tanx+x^2))(1)/(x)+(sec^(2)x+2x)logx`

D

`e^((tanx+x^2))(1)/(x)+(sec^(2)x-2x)logx`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

If x=e^(x/y), then (dy)/(dx) is equal to

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

y=x^(tanx) then (dy)/(dx) is

If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to

If y=(sinx)^(tanx),then(dy)/(dx) is equal to

If y=(tanx)^(cotx) , then (dy)/(dx) is equal to......