Home
Class 12
MATHS
The derivative of y=(1-x)(2-x)(n-x)a tx=...

The derivative of `y=(1-x)(2-x)(n-x)a tx=1` is (b) `(-1)(n-1)!` `n !-1` (d) `(-1)^(n-1)(n-1)!`

A

0

B

`(-1)(n-1)!`

C

`n!-n!`

D

`(-1)^(n-1)(n-1)!`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

The derivative of y=(1-x)(2-x)...(n-x) at x=1 is (a) 0( b) (-1)(n-1)!(c)n!-1(d)(-1)^(n-1)(n-1)!

The coefficient of 1/x in the expansion of (1+x)^(n)(1+1/x)^(n) is (n!)/((n-1)!(n+1)!) b.((2n)!)/((n-1)!(n+1)!) c.((2n-1)!(2n+1)!)/((2n-1)!(2n+1)!) d.none of these

If y=x^(2)e^(x) ,show that y_(n)=(1)/(2)n(n-1)y_(2)-n(n-2)y_(1)+(1)/(2)(n-1)(n-2)}

The value of the determinant of n^(t h) order, being given by |x1 11x11 1x | is (x-1)^(n-1)(x+n-1) b. (x-1)^n(x+n-1) c. (1-x)^(-1)(x+n-1) d. none of these

The solution of dx/dy+y=ye^((n-1)x) (n!=1) is (A)1/(n-1)ln((e^((n-1)x)-1)/e^((n-1)x))=y^2/2+C (B)e^((1-n)x)=1+Ce^((n-1)(y^2/2)) (C) ln(1+Ce^((n-1)(y^2/2)))+nx+1=0 (D) e^((n-1)x)=Ce^((n-1)+(n-1)(y^2/2))+1

The solution of dx/dy+y=ye^((n-1)x) (n!=1) is (A)1/(n-1)ln((e^((n-1)x)-1)/e^((n-1)x))=y^2/2+C (B)e^((1-n)x)=1+Ce^((n-1)(y^2/2)) (C) ln(1+Ce^((n-1)(y^2/2)))+nx+1=0 (D) e^((n-1)x)=Ce^((n-1)+(n-1)(y^2/2))+1

If the middle term of (1+x)^(2n) is the greatest term,then x lies between (A)n-1