Home
Class 12
MATHS
If y=sin[cos(x^(2))] then (dy)/(dx) is e...

If `y=sin[cos(x^(2))]` then `(dy)/(dx)` is equal to

A

`-2xsinx^(2).cos(cosx^(2))`

B

`-2xsinx^(2).cosx^(2)`

C

`2x^(2)sinx^(2).cosx^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin(\cos(x^2)) \), we will apply the chain rule of differentiation. Here’s the step-by-step solution: ### Step 1: Identify the outer and inner functions The function \( y \) can be expressed as a composition of functions: - Outer function: \( u = \sin(v) \) - Inner function: \( v = \cos(w) \) where \( w = x^2 \) ### Step 2: Differentiate the outer function Using the chain rule, the derivative of \( y \) with respect to \( v \) is: \[ \frac{dy}{dv} = \cos(v) \] ### Step 3: Differentiate the middle function Next, we differentiate \( v = \cos(w) \) with respect to \( w \): \[ \frac{dv}{dw} = -\sin(w) \] ### Step 4: Differentiate the innermost function Now, we differentiate \( w = x^2 \) with respect to \( x \): \[ \frac{dw}{dx} = 2x \] ### Step 5: Apply the chain rule Now we can combine these derivatives using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{dv} \cdot \frac{dv}{dw} \cdot \frac{dw}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \cos(\cos(x^2)) \cdot (-\sin(x^2)) \cdot (2x) \] ### Step 6: Simplify the expression Thus, we can write: \[ \frac{dy}{dx} = -2x \sin(x^2) \cos(\cos(x^2)) \] ### Final Answer The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -2x \sin(x^2) \cos(\cos(x^2)) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

If y=log_(sin x)cos x, then (dy)/(dx) is equal to

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If y=sin^(2)x.cos^(3)x, then (dy)/(dx)

If y= ( cos x ^(2))^(2) , "then" (dy)/(dx) is equal to

If sin y=x cos(a+y), then (dy)/(dx) is equal to (cos^(2)(a+y))/(cos a)( b) (cos a)/(cos^(2)(a+y)) (c) (s in^(2)y)/(cos a) (d)

If y=sin(cos x^(2)) , find (dy)/(dx)

If y + sin y = cos x, then (dy)/(dx) is equal to

if y=(sin x)^(cos x). Then (dy)/(dx)=