Home
Class 12
MATHS
If ycosx+xcosy=pi, then (dy)/(dx) is equ...

If `ycosx+xcosy=pi`, then `(dy)/(dx)` is equal to

A

`(ysinx-cosy)/(cosx-xsiny)`

B

`(cosy-ysinx)/(xsiny+cosx)`

C

`(ysinx+cosy)/(cosx-xsiny)`

D

`(ysinx+cosy)/(cosx+xsiny)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(y \cos x + x \cos y = \pi\), we will use implicit differentiation. Here are the steps: ### Step 1: Differentiate both sides of the equation We start with the equation: \[ y \cos x + x \cos y = \pi \] Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(y \cos x) + \frac{d}{dx}(x \cos y) = \frac{d}{dx}(\pi) \] ### Step 2: Apply the product rule For the first term \(y \cos x\), we apply the product rule: \[ \frac{d}{dx}(y \cos x) = y \frac{d}{dx}(\cos x) + \cos x \frac{dy}{dx} = -y \sin x + \cos x \frac{dy}{dx} \] For the second term \(x \cos y\), we also apply the product rule: \[ \frac{d}{dx}(x \cos y) = \cos y + x \frac{d}{dx}(\cos y) = \cos y - x \sin y \frac{dy}{dx} \] ### Step 3: Set the derivatives equal to zero Since \(\frac{d}{dx}(\pi) = 0\), we can set up the equation: \[ -y \sin x + \cos x \frac{dy}{dx} + \cos y - x \sin y \frac{dy}{dx} = 0 \] ### Step 4: Rearrange the equation Now, we rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \cos x \frac{dy}{dx} - x \sin y \frac{dy}{dx} = y \sin x - \cos y \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx}(\cos x - x \sin y) = y \sin x - \cos y \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{y \sin x - \cos y}{\cos x - x \sin y} \] Thus, the final result is: \[ \frac{dy}{dx} = \frac{y \sin x - \cos y}{\cos x - x \sin y} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

If y=a^(5) , then (dy)/(dx) is equal to :

If x=e^(x/y), then (dy)/(dx) is equal to

If y=(cosx)^((cosx)) then (dy)/(dx) is equal to :

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

What is (dy)/(dx) equal to ?

If x^y=y^x , then (dy)/(dx) is equal to......

If y^(x) = x^(y) , "then" (dy)/(dx) is equal to

If y=(tanx)^(cotx) , then (dy)/(dx) is equal to......

If y = x tan y , then (dy)/(dx) is equal to