Home
Class 12
MATHS
If x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t...

If `x=(2t)/(1+t^(2))` and `y=(1-t^(2))/(1+t^(2))`, then `(dy)/(dx)` is equal to

A

`(2t)/(t^(2)+1)`

B

`(2t)/(t^(2)-1)`

C

`(2t)/(1-t^(2))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{2t}{1 + t^2}\) and \(y = \frac{1 - t^2}{1 + t^2}\), we will use the chain rule for differentiation. The steps are as follows: ### Step 1: Differentiate \(x\) with respect to \(t\) We start with the expression for \(x\): \[ x = \frac{2t}{1 + t^2} \] Using the quotient rule, where if \(u = 2t\) and \(v = 1 + t^2\), we have: \[ \frac{dx}{dt} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): - \(\frac{du}{dt} = 2\) - \(\frac{dv}{dt} = 2t\) Now substituting into the quotient rule: \[ \frac{dx}{dt} = \frac{(1 + t^2)(2) - (2t)(2t)}{(1 + t^2)^2} = \frac{2 + 2t^2 - 4t^2}{(1 + t^2)^2} = \frac{2 - 2t^2}{(1 + t^2)^2} = \frac{2(1 - t^2)}{(1 + t^2)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Next, we differentiate \(y\): \[ y = \frac{1 - t^2}{1 + t^2} \] Using the same quotient rule: - Let \(u = 1 - t^2\) and \(v = 1 + t^2\) Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): - \(\frac{du}{dt} = -2t\) - \(\frac{dv}{dt} = 2t\) Now substituting into the quotient rule: \[ \frac{dy}{dt} = \frac{(1 + t^2)(-2t) - (1 - t^2)(2t)}{(1 + t^2)^2} = \frac{-2t - 2t^3 - 2t + 2t^3}{(1 + t^2)^2} = \frac{-4t}{(1 + t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-4t/(1 + t^2)^2}{2(1 - t^2)/(1 + t^2)^2} \] The \((1 + t^2)^2\) cancels out: \[ \frac{dy}{dx} = \frac{-4t}{2(1 - t^2)} = \frac{-2t}{1 - t^2} \] ### Final Answer Thus, we find that: \[ \frac{dy}{dx} = \frac{-2t}{1 - t^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2)), then find (dy)/(dx) at t=2

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)), find (dy)/(dx)

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)),quad find (dy)/(dx)