Home
Class 12
MATHS
If sqrt((x^(2)+y^(2)))=ae^(tan^-1(y//x))...

If `sqrt((x^(2)+y^(2)))=ae^(tan^-1(y//x)),agt0`, then y''(0) equals

A

`(a)/(2)e^(pi//2)`

B

`ae^(pi//2)`

C

`(-2)/(a)e^(-pi//2)`

D

`(a)/(2)e^(-pi//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given, we start with the equation: \[ \sqrt{x^2 + y^2} = a e^{\tan^{-1}(\frac{y}{x})}, \quad a > 0 \] ### Step 1: Square both sides Squaring both sides gives us: \[ x^2 + y^2 = a^2 e^{2 \tan^{-1}(\frac{y}{x})} \] ### Step 2: Use the identity for \(e^{2 \tan^{-1}(z)}\) We can use the identity: \[ e^{2 \tan^{-1}(z)} = \frac{1 + z^2}{1 - z^2} \] where \(z = \frac{y}{x}\). Thus, we have: \[ e^{2 \tan^{-1}(\frac{y}{x})} = \frac{1 + \left(\frac{y}{x}\right)^2}{1 - \left(\frac{y}{x}\right)^2} = \frac{x^2 + y^2}{x^2 - y^2} \] Substituting this back into our equation gives: \[ x^2 + y^2 = a^2 \cdot \frac{x^2 + y^2}{x^2 - y^2} \] ### Step 3: Cross-multiply Cross-multiplying yields: \[ (x^2 + y^2)(x^2 - y^2) = a^2 (x^2 + y^2) \] ### Step 4: Simplify Assuming \(x^2 + y^2 \neq 0\), we can divide both sides by \(x^2 + y^2\): \[ x^2 - y^2 = a^2 \] ### Step 5: Differentiate implicitly Now we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(x^2 - y^2) = \frac{d}{dx}(a^2) \] This gives: \[ 2x - 2y \frac{dy}{dx} = 0 \] Rearranging this, we find: \[ y' = \frac{x}{y} \] ### Step 6: Find \(y'\) at \(x = 0\) To find \(y'\) at \(x = 0\), we substitute \(x = 0\) into our earlier equation: \[ 0^2 - y^2 = a^2 \implies -y^2 = a^2 \implies y = \pm a \] Taking \(y = a\) (since \(a > 0\)) gives: \[ y'(0) = \frac{0}{a} = 0 \] ### Step 7: Differentiate again to find \(y''\) Now we differentiate \(y' = \frac{x}{y}\) again with respect to \(x\): Using the quotient rule: \[ y'' = \frac{y \cdot 1 - x \cdot y'}{y^2} \] Substituting \(y' = \frac{x}{y}\): \[ y'' = \frac{y - x \cdot \frac{x}{y}}{y^2} = \frac{y^2 - x^2}{y^3} \] ### Step 8: Evaluate \(y''(0)\) At \(x = 0\), we have: \[ y''(0) = \frac{y^2 - 0^2}{y^3} = \frac{y^2}{y^3} = \frac{1}{y} \] Substituting \(y = a\): \[ y''(0) = \frac{1}{a} \] ### Final Answer Thus, the value of \(y''(0)\) is: \[ y''(0) = \frac{1}{a} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

if sqrt (x ^ (2) + y ^ (2)) = ae ^ (tan ^ (- 1) ((y) / (x))), a> 0, (y (0)> 0) then y (0) equals

"If "e^(sin(x^(2)+y^(3)))=tan""(y^(2))/(4)+sin^(-1)x," then y'(0) can be "

If y=(tan^(-1))(sqrt(1+x^(2))-1)/(x), then y'(1) is equal to

If (dy)/(dx)=(2^(x+y)-2^(x))/(2^(y)),y(0)=1 then y(1) is equal to

If x ^(2)y^(2) =tan ^(-1) sqrt(x^(2) +y^(2) )+cot ^(-1) sqrt(x^(2) +y^(2)),then (dy)/(dx)=

If 2xydy=(x^(2)+y^(2)+1)*dx,y(1)=0 and y(x_(0))=sqrt(3) then x_(0) can be