Home
Class 12
MATHS
(d)/(dx)[log(secx-tanx)] is equal to...

`(d)/(dx)[log(secx-tanx)]` is equal to

A

`-secx`

B

`secx+tanx`

C

`secx`

D

`secx-tanx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log(\sec x - \tan x) \), we will use the chain rule and the derivatives of the logarithmic, secant, and tangent functions. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \log(\sec x - \tan x) \] 2. **Differentiate using the chain rule**: The derivative of \( \log(u) \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u = \sec x - \tan x \). 3. **Find \( \frac{du}{dx} \)**: We need to differentiate \( u = \sec x - \tan x \). - The derivative of \( \sec x \) is \( \sec x \tan x \). - The derivative of \( \tan x \) is \( \sec^2 x \). Thus, \[ \frac{du}{dx} = \sec x \tan x - \sec^2 x \] 4. **Substitute back into the derivative**: Now substituting \( u \) and \( \frac{du}{dx} \) back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{\sec x - \tan x} \cdot (\sec x \tan x - \sec^2 x) \] 5. **Simplify the expression**: We can rewrite the expression: \[ \frac{dy}{dx} = \frac{\sec x \tan x - \sec^2 x}{\sec x - \tan x} \] 6. **Factor out common terms**: Notice that we can factor out \( \sec x \) from the numerator: \[ \frac{dy}{dx} = \frac{\sec x (\tan x - \sec x)}{\sec x - \tan x} \] 7. **Final simplification**: The numerator and denominator can be rearranged: \[ \frac{dy}{dx} = -\sec x \] ### Final Result: Thus, the derivative \( \frac{d}{dx}[\log(\sec x - \tan x)] \) is: \[ \frac{dy}{dx} = -\sec x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log(sec x+tan x)]=

(d)/(dx)(log*sin x)

(d)/(dx)[log(cos h(2x))]=

(d)/(dx)[log((x)/(e^(tan x)))]=

(d)/(dx)(log tan x)

(d)/(dx)[log((x)/(e^(cotx)))]=

(d)/(dx)((log x)/(sin x))=

(d)/(dx)(log e^(x)*log x)

d/(dx) [log(logx)] =