Home
Class 12
MATHS
If x=cos^(3)theta and y=sin^(3)theta, th...

If `x=cos^(3)theta` and `y=sin^(3)theta`, then `1+(d^2y)/dx^(2)` is equal to

A

`tan^(2)theta`

B

`cot^(2)theta`

C

`sec^(2)theta`

D

`cosec^(2)theta`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=a cos^(3)theta and y=a sin^(3)theta, then find the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(6)

If x=a cos^(3)theta,y=b sin^(3)theta, find (d^(3)y)/(dx^(3)) at theta=0

If x=a cos^(2)theta,y=b sin^(2)theta find (d^2y)/dx^2

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

If x=a cos^(3)theta,y-b sin^(3)theta, find (d^(3)y)/(dx^(3)) at theta=0

If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(2)) =?