Home
Class 12
MATHS
If f(x)=(1-x)^(n), then the value of f...

If `f(x)=(1-x)^(n)`, then the value of
`f(0)+f'(0)+(f''(0))/(2!)+...+(f^(n)(0))/(n!)`, is

A

`2^(n)`

B

0

C

`2^(n-1)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1+x)^(n), then the value of f(0)+f'(0)+(f^(n)(0))/(2!)+(f'''(0))/(3!)+......(f^(n)(0))/(n!)

If f(x)=(2011 + x)^(n) , where x is a real variable and n is a positive interger, then value of f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!) is -f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!) is -

If f(x)=x^(n),"n" epsilon N , then the value of f(1)-(f^(')(1))/(1!)+(f^(")(1))/(2!)-(f^''')(1)/(3!)+…+(-1)^(n)(f^(n)(1))/(n!) is

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

Let f:R to R differerntiable at x=0 and satisfies f(0)=0 and f'(0)=1, then the value of lim_(x to 0) (1)/(x) sum_(x to 1)^(oo) (-1)^(n) f((x)/(n))is

For x varepsilon R,x!=0,x!=1, Let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2,3...... Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to:

If f : R to R is given f (x) = x +1, then the value of lim _( b - oo) (1)/(n) [ f (0) + f ((5)/(n)) + f ((10)/(n)) +...+ f ((5 ( n -1))/( n )) ], is :

If f(x)=(4+x)^(n),"n" epsilonN and f^(r)(0) represents the r^(th) derivative of f(x) at x=0 , then the value of sum_(r=0)^(oo)((f^(r)(0)))/(r!) is equal to