Home
Class 12
MATHS
If r=[2varphi+cos^(2)(2varphi+pi//4)]^(1...

If `r=[2varphi+cos^(2)(2varphi+pi//4)]^(1//2)`, then what is the value of the derivative of `dr//dvarphi` at `varphi=pi//4` ?

A

`2(1^(1//2))/(pi+1)`

B

`2(1^(2))/(pi+1)`

C

`(2^(1//2))/(pi+1)`

D

`2(2^(1//2))/(pi+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the derivative \( \frac{dr}{d\varphi} \) at \( \varphi = \frac{\pi}{4} \) for the function \[ r = \sqrt{2\varphi + \cos^2\left(2\varphi + \frac{\pi}{4}\right)}, \] we will follow these steps: ### Step 1: Differentiate \( r \) with respect to \( \varphi \) Using the chain rule, we differentiate \( r \): \[ \frac{dr}{d\varphi} = \frac{1}{2} \left(2\varphi + \cos^2\left(2\varphi + \frac{\pi}{4}\right)\right)^{-1/2} \cdot \frac{d}{d\varphi}\left(2\varphi + \cos^2\left(2\varphi + \frac{\pi}{4}\right)\right). \] ### Step 2: Differentiate the inner function Now, we need to differentiate the inner function: \[ \frac{d}{d\varphi}\left(2\varphi + \cos^2\left(2\varphi + \frac{\pi}{4}\right)\right). \] Using the chain rule again, we have: \[ \frac{d}{d\varphi}\left(\cos^2\left(2\varphi + \frac{\pi}{4}\right)\right) = 2\cos\left(2\varphi + \frac{\pi}{4}\right)(-\sin\left(2\varphi + \frac{\pi}{4}\right) \cdot 2). \] Thus, \[ \frac{d}{d\varphi}\left(2\varphi + \cos^2\left(2\varphi + \frac{\pi}{4}\right)\right) = 2 - 2\sin\left(2\varphi + \frac{\pi}{4}\right)\cos\left(2\varphi + \frac{\pi}{4}\right). \] ### Step 3: Substitute back into the derivative Now substituting back, we have: \[ \frac{dr}{d\varphi} = \frac{1}{2} \left(2\varphi + \cos^2\left(2\varphi + \frac{\pi}{4}\right)\right)^{-1/2} \cdot \left(2 - 2\sin\left(2\varphi + \frac{\pi}{4}\right)\cos\left(2\varphi + \frac{\pi}{4}\right)\right). \] ### Step 4: Evaluate at \( \varphi = \frac{\pi}{4} \) Now we will evaluate \( \frac{dr}{d\varphi} \) at \( \varphi = \frac{\pi}{4} \): 1. Calculate \( 2\varphi + \cos^2\left(2\varphi + \frac{\pi}{4}\right) \): \[ 2\left(\frac{\pi}{4}\right) + \cos^2\left(2\left(\frac{\pi}{4}\right) + \frac{\pi}{4}\right) = \frac{\pi}{2} + \cos^2\left(\frac{3\pi}{4}\right) = \frac{\pi}{2} + \left(-\frac{1}{\sqrt{2}}\right)^2 = \frac{\pi}{2} + \frac{1}{2}. \] 2. Substitute this into the derivative: \[ \frac{dr}{d\varphi} = \frac{1}{2} \left(\frac{\pi}{2} + \frac{1}{2}\right)^{-1/2} \cdot \left(2 - 2\sin\left(\frac{3\pi}{4}\right)\cos\left(\frac{3\pi}{4}\right)\right). \] 3. Calculate \( \sin\left(\frac{3\pi}{4}\right) \) and \( \cos\left(\frac{3\pi}{4}\right) \): \[ \sin\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}. \] 4. Substitute these values: \[ 2 - 2\left(\frac{1}{\sqrt{2}}\right)\left(-\frac{1}{\sqrt{2}}\right) = 2 + 1 = 3. \] 5. Finally, we have: \[ \frac{dr}{d\varphi} = \frac{1}{2} \left(\frac{\pi}{2} + \frac{1}{2}\right)^{-1/2} \cdot 3. \] ### Final Step: Simplify Thus, the value of \( \frac{dr}{d\varphi} \) at \( \varphi = \frac{\pi}{4} \) is: \[ \frac{3}{2\sqrt{\frac{\pi}{2} + \frac{1}{2}}}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL COEFFICIENTS

    BITSAT GUIDE|Exercise BITSAT Archives|17 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos

Similar Questions

Explore conceptually related problems

If r=[2 phi+cos^(2)(2 phi+(pi)/(4))]^(1/2), then dr/d phi at phi=pi/4

Find the value of the determinant hat varphi=det[[2,3,45,6,86x,9x,12x]]

If tan theta=(1)/(2) andtan varphi =(1)/(3), then the value of theta+varphi is (pi)/(6) (b) pi(c)0(d)(pi)/(4)

If varphi(x) is differentiable function AA x in R and a in R^(+) such that varphi(0)=varphi(2a),varphi(a)=varphi(3a)and varphi(0)!=varphi(a) then show that there is at least one root of equation varphi'(x+a)=varphi'(x)in(0,2a)

Prove that the product of matrices [cos^(2)theta cos theta sin theta cos theta sin theta s in^(2)theta] and [cos^(2)varphi cos varphi sin varphi cos varphi sin varphi s in^(2)varphi] is the null matrix,when theta and varphi differ by an odd multiple of (pi)/(2) .

Given both theta and phi are acute angles and sin theta=(1)/(2),cos varphi=(1)/(3), then the value of theta+varphi belongs to (a)((pi)/(3),(pi)/(2)]( b) ((pi)/(2),(2 pi)/(3)] (c) ((2 pi)/(3),(5 pi)/(6)] (d) ((5 pi)/(6),pi]